Suppr超能文献

含聚氨酯材料的U形混凝土的冲击与失效分析:基于深度学习和数字图像相关的方法

Impact and Failure Analysis of U-Shaped Concrete Containing Polyurethane Materials: Deep Learning and Digital Imaging Correlation-Based Approach.

作者信息

Laqsum Saleh Ahmad, Zhu Han, Haruna Sadi I, Ibrahim Yasser E, Amer Mohammed, Al-Shawafi Ali, Ahmed Omar Shabbir

机构信息

School of Civil Engineering, Tianjin University, Tianjin 300350, China.

Key Laboratory of Coast Civil Structure Safety of the Ministry of Education, Tianjin University, Tianjin 300350, China.

出版信息

Polymers (Basel). 2025 May 2;17(9):1245. doi: 10.3390/polym17091245.

Abstract

This study investigates the use of advanced convolutional neural networks (CNNs) to analyze and classify the fracture behavior of U-shaped concrete modified with polyurethane (PU) under repeated drop-weight impact loads. A total of 17 U-shaped specimens were tested under multiple drop-weight impact loads for each PU binder content (0%, 10%, 20%, and 30%) by weight of cement. By integrating digital image correlation (DIC) with dynamic and static mechanical testing, this research evaluates the concrete's impact resistance and flexural behavior with varying PU binder content. Three CNN architectures, InceptionV3, MobileNet, and DenseNet121, were trained on a dataset comprising 1655 high-resolution crack images to classify the failure stages into no crack, initial crack, and advanced failure. Experimental results revealed that 20% PU content optimally enhances impact resistance and flexural strength, while mechanical properties declined significantly with 30% PU content. The strain localization in DIC analysis indicated reduced matrix cohesion, which was measured by the extent of strain concentration in the material, highlighting the importance of maintaining PU content below 20% to avoid compromising structural integrity. Among the models, InceptionV3 demonstrated superior accuracy (96.67%), precision, and recall, outperforming MobileNet (94.56%) and DenseNet121 (90.03%). The combination of DIC and deep learning offers a robust, automated framework for crack assessment, significantly improving accuracy and efficiency over traditional methods such as visual inspections, which are time-consuming and reliant on expert judgment.

摘要

本研究探讨了使用先进的卷积神经网络(CNN)来分析和分类在反复落锤冲击载荷作用下用聚氨酯(PU)改性的U形混凝土的断裂行为。对于每种按水泥重量计的PU粘结剂含量(0%、10%、20%和30%),共17个U形试件在多个落锤冲击载荷下进行了测试。通过将数字图像相关(DIC)与动态和静态力学测试相结合,本研究评估了不同PU粘结剂含量下混凝土的抗冲击性和弯曲性能。在一个包含1655张高分辨率裂纹图像的数据集上训练了三种CNN架构,即InceptionV3、MobileNet和DenseNet121,以将破坏阶段分类为无裂纹、初始裂纹和严重破坏。实验结果表明,20%的PU含量能最佳地提高抗冲击性和抗弯强度,而30%的PU含量会使力学性能显著下降。DIC分析中的应变局部化表明基体粘结力降低,这通过材料中应变集中的程度来衡量,突出了将PU含量保持在20%以下以避免损害结构完整性的重要性。在这些模型中,InceptionV3表现出卓越的准确率(96.67%)、精确率和召回率,优于MobileNet(94.56%)和DenseNet121(90.03%)。DIC和深度学习的结合为裂纹评估提供了一个强大的自动化框架,与诸如目视检查等传统方法相比,显著提高了准确性和效率,传统方法既耗时又依赖专家判断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4251/12073646/c7f4d560f242/polymers-17-01245-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验