Suppr超能文献

使用机器学习方法对熔融沉积成型打印的ASA热塑性塑料中CO激光切割质量进行多输出预测与优化

Multi-Output Prediction and Optimization of CO Laser Cutting Quality in FFF-Printed ASA Thermoplastics Using Machine Learning Approaches.

作者信息

Der Oguzhan

机构信息

Marine Engineering Department, Bandirma Onyedi Eylul University, 10200 Balikesir, Türkiye.

出版信息

Polymers (Basel). 2025 Jul 10;17(14):1910. doi: 10.3390/polym17141910.

Abstract

This research article examines the CO laser cutting performance of Fused Filament Fabricated Acrylonitrile Styrene Acrylate (ASA) thermoplastics by analyzing the influence of plate thickness, laser power, and cutting speed on four quality characteristics: surface roughness (Ra), top kerf width (Top KW), bottom kerf width (Bottom KW), and bottom heat-affected zone (Bottom HAZ). Forty-five experiments were conducted using five thickness levels, three power levels, and three cutting speeds. To model and predict these outputs, seven machine learning approaches were employed: Autoencoder, Autoencoder-Gated Recurrent Unit, Autoencoder-Long Short-Term Memory, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Regression, and Linear Regression. Among them, XGBoost yielded the highest accuracy across all performance metrics. Analysis of Variance results revealed that Ra is mainly affected by plate thickness, Bottom KW by cutting speed, and Bottom HAZ by power, while Top KW is influenced by all three parameters. The study proposes an effective prediction framework using multi-output modeling and hybrid deep learning, offering a data-driven foundation for process optimization. The findings are expected to support intelligent manufacturing systems for real-time quality prediction and adaptive laser post-processing of engineering-grade thermoplastics such as ASA. This integrative approach also enables a deeper understanding of nonlinear dependencies in laser-material interactions.

摘要

本文通过分析板材厚度、激光功率和切割速度对四个质量特性的影响,研究了熔丝制造的丙烯腈-苯乙烯-丙烯酸酯(ASA)热塑性塑料的CO激光切割性能,这四个质量特性分别为表面粗糙度(Ra)、顶部切口宽度(Top KW)、底部切口宽度(Bottom KW)和底部热影响区(Bottom HAZ)。使用五个厚度级别、三个功率级别和三个切割速度进行了45次实验。为了对这些输出进行建模和预测,采用了七种机器学习方法:自动编码器、自动编码器-门控循环单元、自动编码器-长短期记忆、随机森林、极端梯度提升(XGBoost)、支持向量回归和线性回归。其中,XGBoost在所有性能指标上的准确率最高。方差分析结果表明,Ra主要受板材厚度影响,Bottom KW受切割速度影响,Bottom HAZ受功率影响,而Top KW受所有三个参数影响。该研究提出了一种使用多输出建模和混合深度学习的有效预测框架,为工艺优化提供了数据驱动的基础。研究结果有望支持智能制造系统对工程级热塑性塑料(如ASA)进行实时质量预测和自适应激光后处理。这种综合方法还能够更深入地理解激光与材料相互作用中的非线性依赖性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7e/12298168/7e31e769c337/polymers-17-01910-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验