Mokhova Elizaveta, Gordienko Mariia, Menshutina Natalia, Serkina Ksenia, Avetissov Igor
The Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia (MUCTR), Moscow 125047, Russia.
The Department of Chemistry and Technology of Crystals, Mendeleev University of Chemical Technology of Russia (MUCTR), Moscow 125047, Russia.
Polymers (Basel). 2025 May 5;17(9):1255. doi: 10.3390/polym17091255.
The article describes obtaining polyacrylonitrile (PAN) nanofibers by electrospinning on a setup developed at the Mendeleev University of Chemical Technology of Russia (MUCTR). A technique for producing PAN-based carbon nanofibers (CNFs) and PAN-based CNFs modified with titanium oxide (TiO) is presented. The article presents a comprehensive study of the characteristics of PAN-based nanofibers and CNFs, including an analysis of the external structure of the fibers, the dependence of fiber diameters on the viscosity of the initial solutions, the effect of temperature treatment on the functional groups of PAN, elemental analysis, and flame-retardant properties. It was found that the fiber diameter and its external structure strongly depend on the viscosity of the initial solutions; an increase in viscosity leads to a linear increase in the fiber diameter. Preliminary temperature treatment at 250 °C helps stabilize PAN nanofibers and prevents their melting at the carbonization stage. The differential scanning calorimetry results allowed us to determine the presence of peaks for the initial PAN nanofibers, indicating an exothermic process in the temperature range of 290-320 °C. The peak height decreased with increasing TiO concentration in the samples. For CNF samples of different compositions, the endothermic effect prevailed in the temperature range of 400-700 °C, indicating the possible flame-retardant properties of these materials. The limiting oxygen index (LOI) was calculated based on the thermogravimetric analysis results. The highest LOI values were obtained for CNFs based on PAN without adding TiO nanoparticles and CNFs modified with TiO (3 wt.%). The resulting CNF-based nonwovens can be recommended for use in heat-protective clothing, flame-retardant mattresses, and flame-retardant suits for the military.
本文描述了在俄罗斯门捷列夫化工大学(MUCTR)研发的装置上通过静电纺丝制备聚丙烯腈(PAN)纳米纤维的过程。介绍了一种制备基于PAN的碳纳米纤维(CNF)以及用二氧化钛(TiO₂)改性的基于PAN的CNF的技术。本文对基于PAN的纳米纤维和CNF的特性进行了全面研究,包括纤维外部结构分析、纤维直径对初始溶液粘度的依赖性、温度处理对PAN官能团的影响、元素分析以及阻燃性能。研究发现,纤维直径及其外部结构强烈依赖于初始溶液的粘度;粘度增加会导致纤维直径呈线性增加。在250℃进行的初步温度处理有助于稳定PAN纳米纤维,并防止其在碳化阶段熔化。差示扫描量热法结果使我们能够确定初始PAN纳米纤维存在峰值,表明在290 - 320℃温度范围内存在放热过程。随着样品中TiO₂浓度的增加,峰值高度降低。对于不同组成的CNF样品,在400 - 700℃温度范围内吸热效应占主导,表明这些材料可能具有阻燃性能。基于热重分析结果计算了极限氧指数(LOI)。未添加TiO₂纳米颗粒的基于PAN的CNF以及用3 wt.%的TiO₂改性的CNF获得了最高的LOI值。所得的基于CNF的非织造布可推荐用于制作隔热服、阻燃床垫以及军用阻燃服。