Suppr超能文献

以反应生成的水作为发泡剂制备聚酯泡沫材料及其反应动力学和性能

Preparation, Reaction Kinetics, and Properties of Polyester Foams Using Water Produced by the Reaction as a Foaming Agent.

作者信息

Weitenhagen Fabian, Weichold Oliver

机构信息

Institute for Building Materials Research, RWTH Aachen University, Schinkelstraße 3, 52062 Aachen, Germany.

出版信息

Polymers (Basel). 2025 May 6;17(9):1266. doi: 10.3390/polym17091266.

Abstract

This study explores sustainable foamed polyester materials derived from natural or bio-based building blocks, including succinic, glutaric, and adipic acids, combined with trimethylolpropane and pentaerythritol. By precisely tuning the ratio of functional groups, the resulting polymers contain minimal free functionalities, leading to lower hygroscopicity and enhanced stability. The reaction is monitored by tracking the mass loss associated with water formation, the primary condensation by-product, which reveals a first-order kinetic behaviour. Infrared spectroscopy indicates that foaming occurs in a narrow time window, while esterification begins earlier and continues afterwards. Thermogravimetric analysis confirms thermal stability up to ~400 °C, with complete decomposition at 500 °C and no residue. Scanning electron microscopy images of test specimens with varying densities reveal dense, microporosity-free cell walls in both materials, indicating a homogeneous polymer matrix that contributes to the overall stabilisation of the foam structure. In flammability tests, the foams resist ignition during two 10 s methane flame exposures and, under prolonged flame, burn 40 times more slowly than conventional foams. These results demonstrate a modular system for creating bio-based foams with tunable properties-from soft and elastic to rigid-suitable for diverse applications. The materials offer a sustainable alternative to petrochemical foams while retaining excellent mechanical and thermal properties.

摘要

本研究探索了源自天然或生物基结构单元的可持续泡沫聚酯材料,这些结构单元包括琥珀酸、戊二酸和己二酸,并与三羟甲基丙烷和季戊四醇结合使用。通过精确调整官能团的比例,所得聚合物的游离官能团含量极低,从而降低了吸湿性并提高了稳定性。通过跟踪与水形成相关的质量损失来监测反应,水是主要的缩合副产物,这揭示了一级动力学行为。红外光谱表明,发泡在一个狭窄的时间窗口内发生,而酯化反应开始得更早并在之后继续进行。热重分析证实,材料在高达约400°C的温度下具有热稳定性,在500°C时完全分解且无残留。对不同密度的测试样品进行扫描电子显微镜成像,结果显示两种材料的细胞壁均致密且无微孔隙,表明聚合物基质均匀,有助于泡沫结构的整体稳定。在燃烧性测试中,泡沫材料在两次10秒的甲烷火焰暴露过程中均能抵抗点燃,并且在长时间火焰作用下,其燃烧速度比传统泡沫慢40倍。这些结果证明了一种模块化系统,可用于制造具有可调性能(从柔软有弹性到坚硬)的生物基泡沫,适用于各种应用。这些材料为石化泡沫提供了一种可持续的替代方案,同时保留了优异的机械和热性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e36d/12074305/3b42df29b064/polymers-17-01266-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验