Rado Janos, Stieh Amy, Csík Attila, Kökényesi Sándor, Reznik Alla
Physics Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.
HUN-REN Institute for Nuclear Research, 4032 Debrecen, Hungary.
Materials (Basel). 2025 Apr 23;18(9):1904. doi: 10.3390/ma18091904.
Amorphous lead oxide (a-PbO) X-ray photoconductors show potential for applications in direct conversion medical imaging detectors within the diagnostic energy range. a-PbO enables large-area deposition at low temperatures and exhibits no signal lag. Low dark current can be maintained through specialized blocking layers, similar to those used in multilayer amorphous selenium (a-Se) structures in commercial detectors. However, the current state of a-PbO technology faces challenges in thick layer deposition, leading to crystalline inclusions and cracks. Our proposed stress-induced crystallization model reveals that intrinsic stress in a-PbO layers amplifies with thickness, leading to crystallographic defects. These defects, which are associated with the stable phase of β-PbO, contribute to increased dark current and initiate layer cracking. We calculate the thermal expansion coefficient of a-PbO, indicating a thermomechanical mismatch between the photoconductor and the substrate as the primary source of stress. Furthermore, we demonstrate that layer deposition parameters significantly impact heat accumulation within the growing layer, thereby facilitating temperature-induced crystallization. Our study suggests that relieving stress in grown a-PbO layers by eliminating thermal expansion coefficient mismatches between different layers in a-PbO blocking structures, coupled with optimizing deposition parameters to prevent heat accumulation during layer growth, may inhibit or even prevent stress-induced crystallization and the emergence of structural defects in thick a-PbO layers.
非晶态氧化铅(a-PbO)X射线光电导体在诊断能量范围内的直接转换医学成像探测器中显示出应用潜力。a-PbO能够在低温下进行大面积沉积,并且不存在信号滞后现象。通过专门的阻挡层可以保持低暗电流,这与商业探测器中多层非晶态硒(a-Se)结构中使用的阻挡层类似。然而,a-PbO技术的当前状态在厚层沉积方面面临挑战,导致出现晶体夹杂物和裂纹。我们提出的应力诱导结晶模型表明,a-PbO层中的内应力会随着厚度增加而放大,从而导致晶体缺陷。这些与β-PbO稳定相相关的缺陷会导致暗电流增加并引发层开裂。我们计算了a-PbO的热膨胀系数,表明光电导体与基板之间的热机械不匹配是应力的主要来源。此外,我们证明层沉积参数会显著影响生长层内的热量积累,从而促进温度诱导的结晶。我们的研究表明,通过消除a-PbO阻挡结构中不同层之间的热膨胀系数不匹配来缓解生长的a-PbO层中的应力,再加上优化沉积参数以防止层生长过程中的热量积累,可能会抑制甚至防止厚a-PbO层中应力诱导的结晶和结构缺陷的出现。