Suppr超能文献

通过优化低功率微波辐照递送银和金纳米颗粒抑制生长

Inhibiting Growth by Optimized Low-Power Microwave Irradiation-Delivery of Ag and Au Nanoparticles.

作者信息

Yokota Yukie, Itabashi Nazuna, Kawaguchi Mari, Uchida Hiroshi, Serpone Nick, Horikoshi Satoshi

机构信息

Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo 102-8554, Japan.

PhotoGreen Laboratory, Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100 Pavia, Italy.

出版信息

Molecules. 2025 Apr 22;30(9):1871. doi: 10.3390/molecules30091871.

Abstract

In a ground-breaking recent study, we unveiled the remarkable cellular uptake of 60 nm ZnO and TiO nanoparticles by NIH/3T3 mouse skin fibroblasts under microwave irradiation. Even more stimulating is our current demonstration of the potent ability of Ag nanoparticles (147 nm) and Au nanoparticles (120 nm) to stifle the growth of (-a prokaryote whose cells lack a membrane-bound nucleus and other membrane-bound organelles), vastly smaller than the NIH/3T3 cells, when exposed to significantly optimized low-power microwave irradiation conditions. Our rigorous assessment of the method's effectiveness involved scrutinizing the growth rate of bacteria under diverse conditions involving silver and gold nanoparticles. This indisputably underscores the potential of microwave-nanoparticle interactions in impeding bacterial proliferation. Furthermore, our noteworthy findings on the uptake of fluorescent organosilica nanoparticles by cells following brief, repeated microwave irradiation highlight the bacteria's remarkable ability to assimilate extraneous substances.

摘要

在最近一项具有开创性的研究中,我们揭示了在微波辐射下,NIH/3T3小鼠皮肤成纤维细胞对60纳米的氧化锌和二氧化钛纳米颗粒具有显著的细胞摄取作用。更令人兴奋的是,我们目前证明了,当暴露在经过显著优化的低功率微波辐射条件下时,147纳米的银纳米颗粒和120纳米的金纳米颗粒能够抑制大肠杆菌(一种细胞缺乏膜结合细胞核和其他膜结合细胞器的原核生物)的生长,大肠杆菌比NIH/3T3细胞小得多。我们对该方法有效性的严格评估包括在涉及银和金纳米颗粒的不同条件下仔细检查大肠杆菌的生长速率。这无疑凸显了微波与纳米颗粒相互作用在阻碍细菌增殖方面的潜力。此外,我们关于在短暂、重复的微波辐射后,大肠杆菌细胞对荧光有机硅纳米颗粒摄取的显著发现,突出了大肠杆菌吸收外来物质的非凡能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/409c/12073379/160a93070161/molecules-30-01871-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验