Suppr超能文献

使用gQuant分析qRT-PCR数据以鉴定最稳定的内参基因

Analysis of qRT-PCR Data to Identify the Most Stable Reference Gene Using gQuant.

作者信息

Pathak Abhay Kumar, Kural Sukhad, Singh Shweta, Kumar Lalit, Gupta Manjari, Jain Garima

机构信息

CIMS, Institute of Science, Banaras Hindu University, Varanasi, India.

Department of Urology, Institute of Medical Science, Banaras Hindu University, Varanasi, India.

出版信息

Bio Protoc. 2025 May 5;15(9):e5292. doi: 10.21769/BioProtoc.5292.

Abstract

The accurate quantification of nucleic acid-based biomarkers, including long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and microRNAs (miRNAs), is essential for disease diagnostics and risk assessment across the biological spectrum. Quantitative reverse transcription PCR (qRT-PCR) is the gold standard assay for the quantitative measurement of RNA expression levels, but its reliability depends on selecting stable reference targets for normalization. Yet, the lack of consensus on a universally accepted reference gene for a given sample type or species, despite being necessary for accurate quantification, presents a challenge to the broad application of such biomarkers. Various tools are currently being used to identify a stably expressed gene by using qRT-PCR data of a few potential normalizer genes. However, existing tools for normalizer gene selection are fraught with both statistical limitations and inadequate graphical user interfaces for data visualization. gQuant, the tool presented here, essentially overcomes these limitations. The tool is structured in two key components: the preprocessing component and the data analysis component. The preprocessing addresses missing values in the given dataset by the imputation strategies. After data preprocessing, normalizer genes are ranked using democratic strategies that integrate predictions from multiple statistical methods. The effectiveness of gQuant was validated through data available online as well as in-house data derived from urinary exosomal miRNA expression datasets. Comparative analysis against existing tools demonstrated that gQuant delivers more stable and consistent rankings of normalizer genes. With its promising performance, gQuant enhances the precision and reproducibility in the identification of normalizer genes across diverse research scenarios, addressing key limitations of RNA biomarker-based translational research. Key features • Accurate reference gene selection: gQuant identifies the most stable gene in qRT-PCR datasets using a multi-metric approach including SD, GM, CV, and KDE. • Robust missing data handling: Implements imputation and removal strategies to ensure data integrity and accurate normalizer selection. • Bias-free ranking algorithm: Utilizes a voting-based classifier to provide fair and consistent ranking, overcoming limitations of weighted approaches. • Comprehensive visualization: Offers boxplots and KDE plots for analyzing gene expression variability, aiding in data interpretation.

摘要

对包括长链非编码RNA(lncRNA)、信使RNA(mRNA)和微小RNA(miRNA)在内的基于核酸的生物标志物进行准确量化,对于整个生物领域的疾病诊断和风险评估至关重要。定量逆转录PCR(qRT-PCR)是用于定量测量RNA表达水平的金标准检测方法,但其可靠性取决于选择稳定的参考靶点进行标准化。然而,尽管对于准确量化是必要的,但对于给定样本类型或物种缺乏普遍接受的参考基因的共识,这给此类生物标志物的广泛应用带来了挑战。目前正在使用各种工具,通过使用一些潜在标准化基因的qRT-PCR数据来识别稳定表达的基因。然而,现有的标准化基因选择工具存在统计局限性以及数据可视化的图形用户界面不足的问题。本文介绍的工具gQuant基本上克服了这些局限性。该工具由两个关键组件构成:预处理组件和数据分析组件。预处理通过插补策略处理给定数据集中的缺失值。数据预处理后,使用整合多种统计方法预测的民主策略对标准化基因进行排名。通过在线可得数据以及来自尿液外泌体miRNA表达数据集的内部数据验证了gQuant的有效性。与现有工具的比较分析表明,gQuant能提供更稳定、一致的标准化基因排名。凭借其出色的性能,gQuant提高了跨不同研究场景识别标准化基因的精度和可重复性,解决了基于RNA生物标志物的转化研究的关键局限性。关键特性 • 准确的参考基因选择:gQuant使用包括标准差(SD)、几何平均数(GM)、变异系数(CV)和核密度估计(KDE)在内的多指标方法,在qRT-PCR数据集中识别最稳定的基因。 • 强大的缺失数据处理能力:实施插补和去除策略,以确保数据完整性和准确的标准化基因选择。 • 无偏差排名算法:利用基于投票的分类器提供公平、一致的排名,克服加权方法的局限性。 • 全面的可视化:提供箱线图和KDE图,用于分析基因表达变异性,辅助数据解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40b9/12067311/899b796e484d/BioProtoc-15-9-5292-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验