Suppr超能文献

开发一种稳健且可推广的算法“gQuant”,用于 qRT-PCR 分析中准确选择标准化基因。

Development of a robust and generalizable algorithm "gQuant" for accurate normalizer gene selection in qRT-PCR analysis.

机构信息

DST-CIMS, Institute of Science, Banaras Hindu University, Varanasi, India.

Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

出版信息

Sci Rep. 2024 Aug 13;14(1):18774. doi: 10.1038/s41598-024-66770-y.

Abstract

The emergent role of nucleic acid-based biomarkers-microRNAs(miRNAs), long non-coding RNAs(lncRNAs), and messenger RNAs(mRNAs), is becoming increasingly prominent in disease diagnostics and risk assessment. qRT-PCR is the primary analytical method for quantitative measurement of biomarkers. Yet, the relative infancy of non-coding RNAs recognition as biomarkers poses a challenge due to the absence of a consensus on a universally accepted normalizer gene, an absolute requirement for accurate quantification. Current tools normalizer selection are fraught with statistical limitations and suboptimal graphical user interface for data visualisation. These deficiencies underscore the necessity for a balanced tool tailored to handle qRT-PCR datasets. Addressing the identified challenges, we have developed 'gQuant' tool crafted to address these limitations. We employed voting classifiers that combine predictions from multiple statistical methods. Tool's efficacy was validated through different available and in house data derived from urinary exosomal miRNAs datasets. Comparative analysis with existing tools revealed that their integrated methodologies could skew the ranking of normalizer genes, whereas 'gQuant' consistently yielded rankings characterised by lower standard-deviation, reduced covariance, and enhanced kernel density estimation values. Given 'gQuant's' promising performance, normalizer gene identification will be greatly improved, improving precision of gene expression quantification in a variety of research scenarios. The gQuant tool developed for this study is available for public use and can be accessed at [ https://github.com/ABHAYHBB/gQuant-Tool ]."

摘要

核酸生物标志物——微小 RNA(miRNAs)、长链非编码 RNA(lncRNAs)和信使 RNA(mRNAs)的新兴作用在疾病诊断和风险评估中变得越来越重要。qRT-PCR 是定量测量生物标志物的主要分析方法。然而,由于缺乏普遍接受的归一化基因共识,作为生物标志物的非编码 RNA 的相对不成熟仍然是一个挑战,这是准确量化的绝对要求。目前的归一化基因选择工具存在统计限制和数据可视化的图形用户界面不佳等问题。这些缺陷强调了需要开发一种平衡的工具来处理 qRT-PCR 数据集。为了解决这些挑战,我们开发了 'gQuant' 工具,旨在解决这些限制。我们采用了投票分类器,该分类器结合了来自多种统计方法的预测。该工具的功效通过不同的现有和内部数据进行了验证,这些数据来自尿液外泌体 miRNAs 数据集。与现有工具的比较分析表明,它们的集成方法可能会扭曲归一化基因的排名,而 'gQuant' 则始终产生排名特征为较低的标准偏差、降低的协方差和增强的核密度估计值。鉴于 'gQuant' 的出色表现,归一化基因的识别将得到极大改善,从而提高各种研究场景中基因表达定量的精度。本研究开发的 gQuant 工具可供公众使用,可在 [ https://github.com/ABHAYHBB/gQuant-Tool ] 上访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/182c/11322313/3913974b82a6/41598_2024_66770_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验