Suppr超能文献

通过基于本体的评分和深度学习优化基因选择与模块识别。

Optimizing gene selection and module identification via ontology-based scoring and deep learning.

作者信息

Ettetuani Boutaina, Chahboune Rajaa, Moussa Ahmed

机构信息

Systems and Data Engineering Team, National School of Applied Sciences, Abdelmalek Essaadi University, Tangier 90000, Morocco.

Life and Health Sciences Team, Faculty of Medicine and Pharmacy, Abdelmalek Essaadi University, Tangier 90000, Morocco.

出版信息

Bioinform Adv. 2025 Feb 26;5(1):vbaf034. doi: 10.1093/bioadv/vbaf034. eCollection 2025.

Abstract

MOTIVATION

Understanding gene interactions and their biological significance is a key challenge in computational biology. The complexity of biological systems, coupled with high-dimensional omics data, necessitates robust methods for gene selection and interaction analysis. Traditional statistical techniques often struggle with the hierarchical nature of gene ontology (GO) terms, leading to redundancy and limited interpretability. Meanwhile, deep learning models require biologically meaningful input to enhance their predictive power.

RESULTS

We present an integrated framework that enhances gene selection and uncovers gene interactions by combining a novel statistical algorithm with a deep neural network model. The statistical algorithm ranks differentially expressed genes by correlating their expression scores with the semantic similarity of their biological context, utilizing GO information to align genes with known pathways. The deep neural network then identifies interaction modules by integrating genes from different clusters based on regulatory pathway data. This model effectively navigates the hierarchical complexity of GO terms structured as directed acyclic graphs, employing a feed-forward architecture optimized via back-propagation. Our results demonstrate improved gene selection accuracy and enhanced discovery of biologically relevant interactions, providing valuable insights into complex disease mechanisms.

摘要

动机

理解基因相互作用及其生物学意义是计算生物学中的一项关键挑战。生物系统的复杂性,加上高维组学数据,需要强大的基因选择和相互作用分析方法。传统统计技术常常难以应对基因本体(GO)术语的层次结构性质,导致冗余和有限的可解释性。与此同时,深度学习模型需要具有生物学意义的输入来增强其预测能力。

结果

我们提出了一个集成框架,通过将一种新颖的统计算法与深度神经网络模型相结合,增强基因选择并揭示基因相互作用。该统计算法通过将差异表达基因的表达分数与其生物学背景的语义相似性相关联来对其进行排名,利用GO信息将基因与已知途径对齐。然后,深度神经网络根据调控途径数据整合来自不同簇的基因,识别相互作用模块。该模型有效地应对了作为有向无环图构建的GO术语的层次复杂性,采用了通过反向传播优化的前馈架构。我们的结果表明基因选择准确性得到提高,并且在发现生物学相关相互作用方面有所增强,为复杂疾病机制提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8230/12073971/bdeb309d2e37/vbaf034f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验