Suppr超能文献

无限宽度双层ReLU神经网络的同伦松弛训练算法

Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks.

作者信息

Yang Yahong, Chen Qipin, Hao Wenrui

机构信息

Department of Mathematics, The Pennsylvania State University, University Park, State College, PA 16802, USA.

Amazon Prime Video, Seattle, MA 98109, USA.

出版信息

J Sci Comput. 2025 Feb;102(2). doi: 10.1007/s10915-024-02761-5. Epub 2025 Jan 3.

Abstract

In this paper, we present a novel training approach called the Homotopy Relaxation Training Algorithm (HRTA), aimed at accelerating the training process in contrast to traditional methods. Our algorithm incorporates two key mechanisms: one involves building a homotopy activation function that seamlessly connects the linear activation function with the activation function; the other technique entails relaxing the homotopy parameter to enhance the training refinement process. We have conducted an in-depth analysis of this novel method within the context of the neural tangent kernel (NTK), revealing significantly improved convergence rates. Our experimental results, especially when considering networks with larger widths, validate the theoretical conclusions. This proposed HRTA exhibits the potential for other activation functions and deep neural networks.

摘要

在本文中,我们提出了一种名为同伦松弛训练算法(HRTA)的新颖训练方法,旨在与传统方法相比加速训练过程。我们的算法包含两个关键机制:一个是构建一个同伦激活函数,该函数将线性激活函数与激活函数无缝连接;另一种技术是放松同伦参数以增强训练优化过程。我们在神经切线核(NTK)的背景下对这种新方法进行了深入分析,结果显示收敛速度有显著提高。我们的实验结果,特别是考虑宽度较大的网络时,验证了理论结论。所提出的HRTA在其他激活函数和深度神经网络方面展现出潜力。

相似文献

1
Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks.
J Sci Comput. 2025 Feb;102(2). doi: 10.1007/s10915-024-02761-5. Epub 2025 Jan 3.
2
Convergence of deep convolutional neural networks.
Neural Netw. 2022 Sep;153:553-563. doi: 10.1016/j.neunet.2022.06.031. Epub 2022 Jun 30.
3
A homotopy training algorithm for fully connected neural networks.
Proc Math Phys Eng Sci. 2019 Nov;475(2231):20190662. doi: 10.1098/rspa.2019.0662. Epub 2019 Nov 13.
4
Random Sketching for Neural Networks With ReLU.
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):748-762. doi: 10.1109/TNNLS.2020.2979228. Epub 2021 Feb 4.
5
Approximation of smooth functionals using deep ReLU networks.
Neural Netw. 2023 Sep;166:424-436. doi: 10.1016/j.neunet.2023.07.012. Epub 2023 Jul 18.
6
Predicting the outputs of finite deep neural networks trained with noisy gradients.
Phys Rev E. 2021 Dec;104(6-1):064301. doi: 10.1103/PhysRevE.104.064301.
7
Deep convolutional neural network and IoT technology for healthcare.
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.
8
On a natural homotopy between linear and nonlinear single-layer networks.
IEEE Trans Neural Netw. 1996;7(2):307-17. doi: 10.1109/72.485634.
9
Improved Linear Convergence of Training CNNs With Generalizability Guarantees: A One-Hidden-Layer Case.
IEEE Trans Neural Netw Learn Syst. 2021 Jun;32(6):2622-2635. doi: 10.1109/TNNLS.2020.3007399. Epub 2021 Jun 2.
10
Simple, fast, and flexible framework for matrix completion with infinite width neural networks.
Proc Natl Acad Sci U S A. 2022 Apr 19;119(16):e2115064119. doi: 10.1073/pnas.2115064119. Epub 2022 Apr 11.

引用本文的文献

1
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations.
J Sci Comput. 2025 Aug;104(2). doi: 10.1007/s10915-025-02965-3. Epub 2025 Jun 24.

本文引用的文献

1
Near-optimal deep neural network approximation for Korobov functions with respect to L and H norms.
Neural Netw. 2024 Dec;180:106702. doi: 10.1016/j.neunet.2024.106702. Epub 2024 Sep 6.
2
Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks.
Proc Math Phys Eng Sci. 2020 Jul;476(2239):20200334. doi: 10.1098/rspa.2020.0334. Epub 2020 Jul 15.
3
A homotopy training algorithm for fully connected neural networks.
Proc Math Phys Eng Sci. 2019 Nov;475(2231):20190662. doi: 10.1098/rspa.2019.0662. Epub 2019 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验