Sonani Ravi R, Bianco Simona, Kreutzberger Mark A B, Adams Dave J, Egelman Edward H
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
Faraday Discuss. 2025 May 14. doi: 10.1039/d4fd00181h.
While there have been great advances in the design and synthesis of supramolecular gels, their characterization methods have largely stayed the same, with electron microscopy of dried samples, or small-angle scattering and spectroscopy dominating the approaches used. Although these methods provide valuable insights into structural properties, they are unable to unambiguously generate reliable atomic models that can further guide the site-specific modification of supramolecular gelators. Cryogenic electron microscopy (cryo-EM), allowing the high-resolution imaging of the sample in a hydrated state, has emerged as the dominant technique in structural biology, but has yet to become a routine method in materials science. Here, we describe the use of cryo-EM to determine the atomic structure of the tubular micelle formed by the dipeptide CarbIF, revealing the mechanism of assembly and gelation. Using the CarbIF micelle as an example, we highlight some of the challenges in using cryo-EM to study such materials, and how determination of the helical symmetry can be the most difficult aspect of such a project.
虽然超分子凝胶的设计与合成取得了巨大进展,但其表征方法在很大程度上仍保持不变,主要采用干燥样品的电子显微镜、小角散射和光谱学方法。尽管这些方法能为结构特性提供有价值的见解,但它们无法明确生成可靠的原子模型,而这些模型本可进一步指导超分子凝胶因子的位点特异性修饰。低温电子显微镜(cryo-EM)能够在水合状态下对样品进行高分辨率成像,已成为结构生物学中的主导技术,但尚未成为材料科学中的常规方法。在此,我们描述了使用低温电子显微镜来确定由二肽CarbIF形成的管状胶束的原子结构,揭示了组装和凝胶化的机制。以CarbIF胶束为例,我们强调了使用低温电子显微镜研究此类材料时面临的一些挑战,以及确定螺旋对称性如何可能是该项目中最困难的方面。