Suppr超能文献

因果CCC:一个用于探索细胞间通讯的细胞内因果途径的网络服务器。

CausalCCC: a web server to explore intracellular causal pathways enabling cell-cell communication.

作者信息

Dupuis Louise, Debeaupuis Orianne, Simon Franck, Isambert Hervé

机构信息

CNRS UMR168, Institut Curie, 75005 Paris, France.

Inserm U1163, Institut Imagine, 75005 Paris, France.

出版信息

Nucleic Acids Res. 2025 Jul 7;53(W1):W125-W131. doi: 10.1093/nar/gkaf404.

Abstract

Understanding cell-cell communication (CCC) pathways from single-cell or spatial transcriptomic data is key to unraveling biological processes. Recently, multiple CCC methods have been developed but primarily focus on refining ligand-receptor (L-R) interaction scores. A critical gap for a more comprehensive picture of cellular crosstalks lies in the integration of upstream and downstream intracellular pathways in the sender and receiver cells. We report here CausalCCC, https://miic.curie.fr/causalCCC.php, an interactive web server, which addresses this need by reconstructing gene-gene interaction pathways across two or more interacting cell types from single-cell or spatial transcriptomic data. CausalCCC includes a graphical introduction and a demo dataset within the workbench page as well as a comprehensive tutorial. CausalCCC methodology integrates a robust and scalable causal network reconstruction method, multivariate information-based inductive causation, with internally computed L-R pairs using LIANA+ (including CellphoneDBv5, SingleCellSignalR, Connectome, NATMI, and Log2FC). Alternatively, user-defined L-R pairs from any CCC methods can also be uploaded. We showcase here CausalCCC on different single-cell and spatial transcriptomic datasets from three original CCC methods (NicheNet, CellChat, and Misty). CausalCCC web server offers unique interactive visualization tools dedicated to single-cell data practitioners seeking to go beyond L-R scores and explore extended CCC pathways across multiple interacting cell types.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a6e/12230657/9b830b855640/gkaf404figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验