Chen Keqi, Schewski Lilien, Srivastav Vinkle, Lavanchy Joël, Mutter Didier, Beldi Guido, Keller Sandra, Padoy Nicolas
CNRS, INSERM, ICube, UMR7357, University of Strasbourg, Strasbourg, France.
Department for Biomedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
Int J Comput Assist Radiol Surg. 2025 May 14. doi: 10.1007/s11548-025-03393-2.
Surgical performance depends not only on surgeons' technical skills, but also on team communication within and across the different professional groups present during the operation. Therefore, automatically identifying team communication in the OR is crucial for patient safety and advances in the development of computer-assisted surgical workflow analysis and intra-operative support systems. To take the first step, we propose a new task of detecting communication briefings involving all OR team members, i.e., the team Time-out and the StOP?-protocol, by localizing their start and end times in video recordings of surgical operations.
We generate an OR dataset of real surgeries, called Team-OR, with more than one hundred hours of surgical videos captured by the multi-view camera system in the OR. The dataset contains temporal annotations of 33 Time-out and 22 StOP?-protocol activities in total. We then propose a novel group activity detection approach, where we encode both scene context and action features, and use an efficient neural network model to output the results.
The experimental results on the Team-OR dataset show that our approach outperforms existing state-of-the-art temporal action detection approaches. It also demonstrates the lack of research on group activities in the OR, proving the significance of our dataset.
We investigate the Team Time-Out and the StOP?-protocol in the OR, by presenting the first OR dataset with temporal annotations of group activities protocols, and introducing a novel group activity detection approach that outperforms existing approaches. Code is available at https://github.com/CAMMA-public/Team-OR .
手术表现不仅取决于外科医生的技术技能,还取决于手术过程中不同专业团队内部和之间的团队沟通。因此,自动识别手术室中的团队沟通对于患者安全以及计算机辅助手术工作流程分析和术中支持系统的发展至关重要。作为第一步,我们提出了一项新任务,即通过在外科手术视频记录中定位其开始和结束时间来检测涉及所有手术室团队成员的沟通简报,即团队暂停和StOP?协议。
我们生成了一个名为Team-OR的真实手术的手术室数据集,其中包含手术室中多视角摄像头系统捕获的超过一百小时的手术视频。该数据集总共包含33次团队暂停和22次StOP?协议活动的时间注释。然后,我们提出了一种新颖的群体活动检测方法,在该方法中,我们对场景上下文和动作特征进行编码,并使用高效的神经网络模型输出结果。
在Team-OR数据集上的实验结果表明,我们的方法优于现有的最先进的时间动作检测方法。它还表明在手术室群体活动方面缺乏研究,证明了我们数据集的重要性。
我们通过展示第一个带有群体活动协议时间注释的手术室数据集,并引入一种优于现有方法的新颖群体活动检测方法,来研究手术室中的团队暂停和StOP?协议。代码可在https://github.com/CAMMA-public/Team-OR获取。