Wenzel Jonas O, Werner Johannes, Breher Frank
Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie, Chemistry, Karlsruhe, GERMANY.
Karlsruhe Institute of Technology, Institut für Anorganische Chemie, Engesserstr. 15, 76131, Karlsruhe, GERMANY.
Angew Chem Int Ed Engl. 2025 May 14:e202507060. doi: 10.1002/anie.202507060.
Photoinitiated homolysis of element-carbon bonds is an important method for the generation of carbon-centered radicals in catalysis and organometallic or polymer chemistry. In this respect, the use of earth-abundant main group elements such as aluminum or silicon is attractive. Generally, subvalent species derived from these typically redox-inactive elements are unstable and within their high-valent configuration +III (Al) or +IV (Si) comparatively strong E-C bonds are formed. Therefore, E-C homolysis usually requires short-wave UV irradiation, which hampers their use as radical sources. Some reports in the literature show that visible-light-induced E-C homolysis is possible when a redox non-innocent ligand (NIL) is coordinated to the organometallic fragment. In a simplified view, the non-innocent ligands provide chromophoric moieties, which can absorb energy in form of light and subsequently convert it to break the element-carbon bonds. The resulting main group element radicals are in turn stabilized by delocalization of the unpaired electron, effectively lowering the dissociation energy of the E-C bond. In this article, the effects of non-innocent ligands as mediators for visible-light-induced E-C bond homolysis in main group chemistry are discussed on the basis of selected literature reports, and future opportunities and challenges are highlighted.
光引发的元素-碳键均裂是催化、有机金属或高分子化学中生成碳中心自由基的重要方法。在这方面,使用诸如铝或硅等地球上储量丰富的主族元素很有吸引力。一般来说,源自这些通常无氧化还原活性的元素的低价物种不稳定,并且在其三价(铝)或四价(硅)的高价构型中会形成相对较强的E-C键。因此,E-C均裂通常需要短波紫外线照射,这限制了它们作为自由基源的应用。文献中的一些报道表明,当氧化还原非无辜配体(NIL)与有机金属片段配位时,可见光诱导的E-C均裂是可能的。简单来说,非无辜配体提供发色基团,其可以吸收光能并随后将其转化以断裂元素-碳键。生成的主族元素自由基通过未成对电子的离域而得到稳定,有效地降低了E-C键的离解能。在本文中,基于选定的文献报道讨论了非无辜配体作为主族化学中可见光诱导E-C键均裂的介质的作用,并强调了未来的机遇和挑战。