Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK.
Academic Unit of Oral & Maxillofacial Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, UK.
J Pathol. 2023 Aug;260(4):431-442. doi: 10.1002/path.6094. Epub 2023 Jun 9.
Oral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability and prognostic unreliability. In this work, we propose a deep learning approach for the development of prognostic models for malignant transformation and their association with clinical outcomes in histology whole slide images (WSIs) of OED tissue sections. We train a weakly supervised method on OED cases (n = 137) with malignant transformation (n = 50) and mean malignant transformation time of 6.51 years (±5.35 SD). Stratified five-fold cross-validation achieved an average area under the receiver-operator characteristic curve (AUROC) of 0.78 for predicting malignant transformation in OED. Hotspot analysis revealed various features of nuclei in the epithelium and peri-epithelial tissue to be significant prognostic factors for malignant transformation, including the count of peri-epithelial lymphocytes (PELs) (p < 0.05), epithelial layer nuclei count (NC) (p < 0.05), and basal layer NC (p < 0.05). Progression-free survival (PFS) using the epithelial layer NC (p < 0.05, C-index = 0.73), basal layer NC (p < 0.05, C-index = 0.70), and PELs count (p < 0.05, C-index = 0.73) all showed association of these features with a high risk of malignant transformation in our univariate analysis. Our work shows the application of deep learning for the prognostication and prediction of PFS of OED for the first time and offers potential to aid patient management. Further evaluation and testing on multi-centre data is required for validation and translation to clinical practice. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
口腔鳞状细胞癌(OSCC)是最常见的癌症之一,全球每年新增病例超过 37.7 万例。OSCC 的预后仍然较差,与癌症在晚期出现有关,这表明需要早期发现以改善患者的预后。OSCC 通常以前称为口腔上皮异型增生(OED)的癌前状态为先导,OED 的诊断和分级采用主观的组织学标准,导致了变异性和预后不可靠性。在这项工作中,我们提出了一种深度学习方法,用于开发 OED 组织切片组织学全切片图像(WSI)中恶性转化的预后模型及其与临床结果的关联。我们在 OED 病例(n=137)上训练了一种弱监督方法,其中包括恶性转化病例(n=50),平均恶性转化时间为 6.51 年(±5.35 SD)。分层五折交叉验证在预测 OED 中的恶性转化方面平均获得了 0.78 的接收器操作特征曲线下面积(AUROC)。热点分析显示上皮和上皮周围组织中细胞核的各种特征是恶性转化的重要预后因素,包括上皮周围淋巴细胞(PEL)计数(p<0.05)、上皮层核计数(NC)(p<0.05)和基底层 NC(p<0.05)。使用上皮层 NC(p<0.05,C 指数=0.73)、基底层 NC(p<0.05,C 指数=0.70)和 PELs 计数(p<0.05,C 指数=0.73)的无进展生存期(PFS)均显示这些特征与我们的单变量分析中恶性转化的高风险相关。我们的工作首次展示了深度学习在 OED 预后和预测 PFS 中的应用,并为患者管理提供了潜在的帮助。需要进一步在多中心数据上进行评估和测试,以进行验证并将其转化为临床实践。©2023 作者。《病理学杂志》由 John Wiley & Sons Ltd 代表英国和爱尔兰病理学学会出版。