Suppr超能文献

一种源自心电图的新型衰老生物标志物可改善心血管疾病发病风险预测。

A New Biomarker of Aging Derived From Electrocardiograms Improves Risk Prediction of Incident Cardiovascular Disease.

作者信息

Wilsgaard Tom, Rosamond Wayne, Schirmer Henrik, Lindekleiv Haakon, Attia Zachi I, Lopez-Jimenez Francisco, Leon David A, Iakunchykova Olena

机构信息

Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

JACC Adv. 2025 May 13;4(6 Pt 1):101764. doi: 10.1016/j.jacadv.2025.101764.

Abstract

BACKGROUND

A biomarker of cardiovascular aging, derived from a deep learning algorithm applied to digitized 12-lead electrocardiograms, has recently been introduced. This biomarker, δ-age, is defined as the difference between predicted electrocardiogram age and chronological age.

OBJECTIVES

The purpose of this study was to assess the potential value of δ-age in enhancing the performance of primary prevention models for cardiovascular disease that incorporate traditional cardiovascular risk factors.

METHODS

In this cohort study, we included 7,108 men and women from the Norwegian Tromsø Study in 2015 to 16, with follow-up through 2021 for incident fatal and nonfatal myocardial infarction (MI) and hemorrhagic or cerebral stroke. We used Cox proportional hazards regression models, Harrell's concordance statistic (C-index), and the net reclassification improvement.

RESULTS

During a median follow-up of 5.9 years, we observed 155 cases of MI and 141 strokes. In men and women combined,HR per SD increment in δ-age, after adjustment for traditional risk factors included in the Norwegian risk model for acute cerebral stroke and myocardial infarction (NORRISK 2) score, was 1.24 (95% CI: 1.09-1.41) for the combined outcome, with similar HRs for MI and stroke. In men, the HR was significant for MI and in women for stroke. The C-index increased significantly but modestly when δ-age was added to a model with traditional risk factors. The net reclassification improvement was 26.0% (95% CI: 13.3%-38.1%) for the combined outcome, 17.5% (95% CI: 0.6%-33.5%) for MI, and 37.2% (95% CI: 20.1%-53.0%) for stroke.

CONCLUSIONS

Incorporating δ-age into primary prevention risk prediction models significantly improved performance beyond traditional cardiovascular risk factors for the combined outcome and separately for MI and stroke.

摘要

背景

最近引入了一种心血管衰老生物标志物,它源自应用于数字化12导联心电图的深度学习算法。这种生物标志物δ-年龄被定义为预测心电图年龄与实际年龄之间的差值。

目的

本研究旨在评估δ-年龄在提高纳入传统心血管危险因素的心血管疾病一级预防模型性能方面的潜在价值。

方法

在这项队列研究中,我们纳入了2015年至2016年挪威特罗姆瑟研究中的7108名男性和女性,并对其进行随访直至2021年,以观察致命和非致命性心肌梗死(MI)以及出血性或脑卒中等事件。我们使用了Cox比例风险回归模型、Harrell一致性统计量(C指数)和净重新分类改善。

结果

在中位随访5.9年期间,我们观察到155例心肌梗死和141例脑卒中。在男性和女性合并分析中,在调整了挪威急性脑卒中和心肌梗死风险模型(NORRISK 2)评分中包含的传统危险因素后,δ-年龄每增加一个标准差,联合结局的风险比(HR)为1.24(95%置信区间:1.09 - 1.41),心肌梗死和脑卒中的HR相似。在男性中,心肌梗死的HR具有统计学意义;在女性中,脑卒中的HR具有统计学意义。当将δ-年龄添加到包含传统危险因素的模型中时,C指数显著但适度增加。联合结局的净重新分类改善为26.0%(95%置信区间:13.3% - 38.1%),心肌梗死为17.5%(95%置信区间:0.6% - 33.5%),脑卒中为37.2%(95%置信区间:20.1% - 53.0%)。

结论

将δ-年龄纳入一级预防风险预测模型,对于联合结局以及分别对于心肌梗死和脑卒中,在传统心血管危险因素之外显著提高了模型性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a46/12142506/e21461a070ec/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验