Fontana Barbara D, Canzian Julia, Rosemberg Denis B
Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil.
Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil.
Prog Neuropsychopharmacol Biol Psychiatry. 2025 Jun 20;139:111398. doi: 10.1016/j.pnpbp.2025.111398. Epub 2025 May 12.
The zebrafish (Danio rerio) has emerged as a powerful organism in behavioral neuroscience, offering invaluable insights into the neural circuits and molecular pathways underlying complex behaviors. Although the knowledge of zebrafish behavioral repertoire is expanding rapidly, fundamental questions regarding complex behaviors remain poorly explored. Recent advances in machine learning offer potential for enhancing zebrafish behavioral analysis, enabling more precise, scalable, and unbiased assessments when compared to the traditional method. Thus, machine learning automates tracking and pattern recognition, uncovering new behavioral phenotypes and streamlining analysis typically manually assessed. Here, we highlight the potential use of machine learning tools in zebrafish-based models uncovering nuanced behavioral phenotypes to accelerate discoveries in translational neurobehavioral research, addressing the challenges and ethical considerations in the field. We emphasize that associating machine learning with zebrafish behavioral research, significant advances to elucidate neural and molecular mechanisms driving complex behaviors are expected. Collectively, the progressive refinement of these methods by enabling more detailed and efficient analysis will not only enhance the utility of zebrafish in translational neuroscience, but also contribute to develop more effective models of human disorders and in the search of potential neuroprotective strategies.
斑马鱼(Danio rerio)已成为行为神经科学中一种强大的生物,为探究复杂行为背后的神经回路和分子途径提供了宝贵的见解。尽管斑马鱼行为库的知识正在迅速扩展,但关于复杂行为的基本问题仍未得到充分探索。机器学习的最新进展为增强斑马鱼行为分析提供了潜力,与传统方法相比,能够进行更精确、可扩展且无偏差的评估。因此,机器学习实现了跟踪和模式识别的自动化,揭示了新的行为表型,并简化了通常需要人工评估的分析过程。在这里,我们强调机器学习工具在基于斑马鱼的模型中的潜在用途,这些模型能够揭示细微的行为表型,以加速转化神经行为研究中的发现,同时解决该领域的挑战和伦理考量。我们强调,将机器学习与斑马鱼行为研究相结合,有望在阐明驱动复杂行为的神经和分子机制方面取得重大进展。总的来说,通过实现更详细和高效的分析来逐步完善这些方法,不仅将提高斑马鱼在转化神经科学中的效用,还将有助于开发更有效的人类疾病模型,并寻找潜在的神经保护策略。