Zwartsen Anne, Zeilmaker Marco, de Boer Waldo J, Rorije Emiel, van der Voet Hilko
National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands.
Wageningen University & Research (WUR) Biometris, 6708 PB Wageningen, The Netherlands.
Chem Res Toxicol. 2025 Jun 16;38(6):1006-1018. doi: 10.1021/acs.chemrestox.4c00287. Epub 2025 May 14.
New approach methodologies (NAMs) are promising for refining, reducing, and replacing animal experiments for hazard characterization. Quantitative in vitro-in vivo extrapolation (qIVIVE) is essential to extrapolate an in vitro-based point of departure to an in vitro-based human equivalent dose and subsequently to an in vitro-based health-based guidance or threshold value. The use of NAMs for hazard characterization leads to the need for various new extrapolations and linked uncertainties that preferably are quantified. Currently, qIVIVE is often performed without addressing these uncertainties. A clear description and, if possible, quantification of extrapolations and uncertainties when using NAMs for risk assessment will aid the regulatory implementation of NAMs for risk assessment. A case study of a qIVIVE-based assessment on the risk of liver steatosis from dietary exposure to imazalil is reported, using a human cell line in vitro test method as an example of a NAM to replace animal experiments. We consider the uncertainties related to the extrapolations from in vitro to in vivo effects, from in vitro nominal concentrations to in vitro intracellular concentrations, from in vitro concentrations to external doses (reverse dosimetry), from in vitro exposure durations to in vivo exposure situations, and from the average human to a sensitive individual. The case study addresses these uncertainties in a mainly quantitative approach, using available data and the Monte Carlo Risk Assessment platform.
新方法学(NAMs)有望优化、减少和替代用于危害特征描述的动物实验。定量体外-体内外推法(qIVIVE)对于将基于体外的起始点外推至基于体外的人体等效剂量,并随后外推至基于体外的健康指导值或阈值至关重要。使用NAMs进行危害特征描述导致需要进行各种新的外推以及相关的不确定性,最好对这些不确定性进行量化。目前,qIVIVE的执行通常未考虑这些不确定性。在使用NAMs进行风险评估时,对外推和不确定性进行清晰描述,并尽可能进行量化,将有助于NAMs在风险评估中的监管实施。本文报道了一项基于qIVIVE的案例研究,评估饮食接触抑霉唑导致肝脂肪变性的风险,以一种人类细胞系体外测试方法为例,作为替代动物实验的NAMs。我们考虑了与从体外到体内效应、从体外标称浓度到体外细胞内浓度、从体外浓度到外部剂量(反向剂量测定)、从体外暴露持续时间到体内暴露情况以及从普通人群到敏感个体的外推相关的不确定性。该案例研究主要采用定量方法,利用现有数据和蒙特卡洛风险评估平台来解决这些不确定性。