Suppr超能文献

用于信息安全与共享的偏振选择性单向和双向衍射神经网络

Polarization-selective unidirectional and bidirectional diffractive neural networks for information security and sharing.

作者信息

Guo Ziqing, Tan Zhiyu, Zang Xiaofei, Zhang Teng, Wang Guannan, Li Hongguang, Wang Yuanbo, Zhu Yiming, Ding Fei, Zhuang Songlin

机构信息

Terahertz Technology Innovation Research Institute, University of Shanghai for Science and Technology, Shanghai, China.

Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China.

出版信息

Nat Commun. 2025 May 14;16(1):4492. doi: 10.1038/s41467-025-59763-6.

Abstract

Information security aims to protect confidentiality and prevent information leakage, which inherently conflicts with the goal of information sharing. Balancing these competing requirements is especially challenging in all-optical systems, where efficient data transmission and rigorous security are essential. Here we propose and experimentally demonstrate a metasurface-based approach that integrates phase manipulation, polarization conversion, as well as direction- and polarization-selective functionalities into all-optical diffractive neural networks (DNNs). This approach enables a polarization-controllable switch between unidirectional and bidirectional DNNs, thus simultaneously realizing information security and sharing. A cascaded terahertz metasurface comprising quarter-wave plates and metallic gratings is designed to function as a polarization-selective unidirectional-bidirectional classifier and imager. By introducing half-wave plates into a cascade metasurface, we achieve a polarization-controlled transition in unidirectional-bidirectional-unidirectional modes for classification and imaging. Furthermore, we demonstrate a high-security data exchange framework based on these polarization-selective DNNs. The proposed DNNs with polarization-switchable unidirectional/bidirectional capabilities offer significant potential for privacy protection, encryption, communications, and data exchange.

摘要

信息安全旨在保护机密性并防止信息泄露,这与信息共享的目标存在内在冲突。在全光系统中平衡这些相互矛盾的要求尤其具有挑战性,因为在全光系统中高效的数据传输和严格的安全性至关重要。在此,我们提出并通过实验证明了一种基于超表面的方法,该方法将相控、偏振转换以及方向和偏振选择功能集成到全光衍射神经网络(DNN)中。这种方法能够在单向和双向DNN之间实现偏振可控切换,从而同时实现信息安全和共享。设计了一种由四分之一波片和金属光栅组成的级联太赫兹超表面,用作偏振选择单向 - 双向分类器和成像器。通过将半波片引入级联超表面,我们实现了用于分类和成像的单向 - 双向 - 单向模式下的偏振控制转换。此外,我们展示了一个基于这些偏振选择DNN的高安全性数据交换框架。所提出的具有偏振可切换单向/双向能力的DNN在隐私保护、加密、通信和数据交换方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23d1/12078492/d94eee940bb6/41467_2025_59763_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验