Sola Josep, Arderiu Andreu, Almeida Tiago P, Fallet Sibylle, Yazdani Sasan, Haddad Serj, Perruchoud David, Grossenbacher Olivier, Shah Jay
Aktiia SA, Neuchâtel, Switzerland.
Front Digit Health. 2025 Apr 30;7:1518322. doi: 10.3389/fdgth.2025.1518322. eCollection 2025.
Photoplethysmography (PPG) sensors, capturing optical signals from arterial pulses, are debated for their potential in blood pressure (BP) measurement. This study employed the largest dataset to date of paired PPG and cuff BP readings to explore PPG signals for BP estimation.
32,152 European residents (age 55.9% ± 11.8, 24% female, BMI 27.7 ± 4.6) voluntarily acquired and used a cuffless BP monitor (Aktiia SA, Switzerland) between March/2,021-March/2023. Systolic and diastolic BP (SBP, DBP) from an upper arm oscillometric cuff were collected simultaneously with wrist PPG (668,080 paired measurements). Six different machine learning models were developed to predict BP using cuff BP readings as reference (75%|15%|15% training|validation|testing): four baseline models [heart rate (HR), Age, Demography (DEM: Age + Gender + BMI), DEM + HR], and two models relying on the analysis of the PPG waveforms (PPG, PPG + DEM). Performance of each model was evaluated on the 4,823 subjects from the testing set using as metrics the Pearson's correlation (r) when comparing the estimated and the reference BP values, and the area under the receiver operating characteristic (AUROC) curves, and true positive and true negative rates (TPR, TNR) for the detection of high BP (reference SBP ≥ 140 or DBP ≥ 90 mmHg, applying a ± 8 mmHg exclusion zone to account for cuff measurement uncertainty).
Baseline models showed low correlation with cuff data and poor high BP detection ( < 0.35; AUROC < 0.65, TPR < 0.65, TNR < 0.58). PPG-based models excelled in correlating with cuff BP (SBP: = 0.53 for PPG, = 0.63 for PPG + DEM; DBP: = 0.58 for PPG, = 0.67 for PPG + DEM) and high BP detection (SBP: AUROC = 0.84, TPR = TNR = 0.75; DBP: AUROC = 0.89, TPR = TNR = 0.81 for PPG; SBP: AUROC = 0.89, TPR = TNR = 0.80; DBP: AUROC = 0.93, TPR = TNR = 0.86 for PPG + DEM).
This study demonstrated that PPG signals contain reliable markers of BP, and that BP values can be estimated using only markers found within PPG's optical pulsatility signals, outperforming models based solely on demographic data. These findings hold the potential to radically transform hypertension screening and global healthcare delivery, paving the way for innovative approaches in patient diagnosis, monitoring and treatment methodologies.
光电容积脉搏波描记法(PPG)传感器通过捕捉动脉搏动的光信号来测量血压,其在血压测量方面的潜力存在争议。本研究使用了迄今为止最大的PPG与袖带血压读数配对数据集,以探索用于血压估计的PPG信号。
2021年3月至2023年3月期间,32152名欧洲居民(年龄55.9%±11.8,24%为女性,体重指数27.7±4.6)自愿购买并使用了一款无袖带血压监测仪(瑞士Aktiia SA公司)。同时收集上臂示波袖带测量的收缩压和舒张压(SBP、DBP)以及手腕PPG数据(668080对配对测量值)。开发了六种不同的机器学习模型,以袖带血压读数为参考来预测血压(75%|15%|15%用于训练|验证|测试):四个基线模型[心率(HR)、年龄、人口统计学特征(DEM:年龄+性别+体重指数)、DEM+HR],以及两个基于PPG波形分析的模型(PPG、PPG+DEM)。在测试集的4823名受试者上评估每个模型的性能,比较估计血压值和参考血压值时使用皮尔逊相关系数(r)作为指标,同时使用受试者操作特征曲线下面积(AUROC)以及检测高血压的真阳性率和真阴性率(TPR、TNR)(参考SBP≥140或DBP≥90 mmHg,考虑到袖带测量的不确定性,设置±8 mmHg的排除区)。
基线模型与袖带数据的相关性较低,高血压检测能力较差(r<0.35;AUROC<0.65,TPR<0.65,TNR<0.58)。基于PPG的模型在与袖带血压的相关性方面表现出色(SBP:PPG为0.53,PPG+DEM为0.63;DBP:PPG为0.58,PPG+DEM为0.67)以及高血压检测方面(SBP:AUROC=0.84,TPR=TNR=0.75;DBP:PPG的AUROC=0.89,TPR=TNR=0.81;SBP:AUROC=0.89,TPR=TNR=0.80;DBP:PPG+DEM的AUROC=0.93,TPR=TNR=0.86)。
本研究表明,PPG信号包含可靠的血压标志物,仅使用PPG光搏动信号中的标志物即可估计血压值,优于仅基于人口统计学数据的模型。这些发现有可能从根本上改变高血压筛查和全球医疗服务,为患者诊断、监测和治疗方法的创新途径铺平道路。