Adam Nancy, Yang Yang, Djamshidi Mahbod, Seifan Sara, Ting Nicholas S Y, Glover Joel, Touret Nicolas, Gordon Paul M K, Vineetha Warriyar K V, Krowicki Hokan, Garcia Christine Kim, Savage Sharon A, Goodarzi Aaron A, Baird Duncan M, Beattie Tara L, Riabowol Karl
Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK.
Aging Cell. 2025 Aug;24(8):e70105. doi: 10.1111/acel.70105. Epub 2025 May 15.
Replicative senescence occurs in response to shortened telomeres and is triggered by ATM and TP53-mediated DNA damage signaling that blocks replication. hTERT lengthens telomeres, which is thought to block damage signaling and the onset of senescence. We find that normal diploid fibroblasts expressing hTERT mutants unable to maintain telomere length do not initiate DNA damage signaling and continue to replicate, despite having telomeres shorter than senescent cells. The TRF1 and TRF2 DNA binding proteins of the shelterin complex stabilize telomeres, and we find that expression of different mutant hTERT proteins decreases levels of the Siah1 E3 ubiquitin ligase that targets TRF2 to the proteasome, by increasing levels of the CDC20 and FBXO5 E3 ligases that target Siah1. This restores the TRF2:TRF1 ratio to block the activation of ATM and subsequent activation of TP53 that is usually associated with DNA damage-induced senescence signaling. All hTERT variants reduce DNA damage signaling, and this occurs concomitantly with telomeres assuming a more compact, denser conformation than senescent cells as measured by super-resolution microscopy. This indicates that hTERT variants induce TRF2-mediated telomere compaction that is independent of telomere length, and it plays a dominant role in regulating the DNA damage signaling that induces senescence and blocks replication of human fibroblasts. These observations support the idea that very short telomeres often seen in cancer cells may fail to induce senescence due to selective stabilization of components of the shelterin complex, increasing telomere density, rather than maintaining telomere length via the reverse transcriptase activity of hTERT.
复制性衰老发生于端粒缩短时,由ATM和TP53介导的DNA损伤信号触发,该信号会阻断复制。hTERT可延长端粒,人们认为这会阻断损伤信号及衰老的起始。我们发现,表达无法维持端粒长度的hTERT突变体的正常二倍体成纤维细胞不会启动DNA损伤信号,而是继续复制,尽管其端粒比衰老细胞的端粒短。端粒保护蛋白复合体的TRF1和TRF2 DNA结合蛋白可稳定端粒,我们发现,不同突变体hTERT蛋白的表达通过增加靶向Siah1的CDC20和FBXO5 E3连接酶的水平,降低了将TRF2靶向蛋白酶体的Siah1 E3泛素连接酶的水平。这恢复了TRF2:TRF1的比例,从而阻断了通常与DNA损伤诱导的衰老信号相关的ATM激活及随后的TP53激活。所有hTERT变体均能减少DNA损伤信号,通过超分辨率显微镜测量发现,此时端粒呈现出比衰老细胞更紧密、更致密的构象。这表明hTERT变体诱导了TRF2介导的端粒压缩,该过程与端粒长度无关,并且在调节诱导衰老并阻断人成纤维细胞复制的DNA损伤信号中起主导作用。这些观察结果支持了这样一种观点,即癌细胞中常见的极短端粒可能由于端粒保护蛋白复合体成分的选择性稳定、增加端粒密度而无法诱导衰老,而非通过hTERT的逆转录酶活性维持端粒长度。
Arch Razi Inst. 2024-12-31
Biochim Biophys Acta Mol Basis Dis. 2025-5-14
Aging (Albany NY). 2011-1
Nucleic Acids Res. 2022-7-22
Nucleic Acids Res. 2021-12-2
Oncogene. 2017-7-13