文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

hTERT通过增加TRF2来诱导端粒压缩并延长细胞复制寿命。

hTERT Increases TRF2 to Induce Telomere Compaction and Extend Cell Replicative Lifespan.

作者信息

Adam Nancy, Yang Yang, Djamshidi Mahbod, Seifan Sara, Ting Nicholas S Y, Glover Joel, Touret Nicolas, Gordon Paul M K, Vineetha Warriyar K V, Krowicki Hokan, Garcia Christine Kim, Savage Sharon A, Goodarzi Aaron A, Baird Duncan M, Beattie Tara L, Riabowol Karl

机构信息

Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK.

出版信息

Aging Cell. 2025 Aug;24(8):e70105. doi: 10.1111/acel.70105. Epub 2025 May 15.


DOI:10.1111/acel.70105
PMID:40371663
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12341801/
Abstract

Replicative senescence occurs in response to shortened telomeres and is triggered by ATM and TP53-mediated DNA damage signaling that blocks replication. hTERT lengthens telomeres, which is thought to block damage signaling and the onset of senescence. We find that normal diploid fibroblasts expressing hTERT mutants unable to maintain telomere length do not initiate DNA damage signaling and continue to replicate, despite having telomeres shorter than senescent cells. The TRF1 and TRF2 DNA binding proteins of the shelterin complex stabilize telomeres, and we find that expression of different mutant hTERT proteins decreases levels of the Siah1 E3 ubiquitin ligase that targets TRF2 to the proteasome, by increasing levels of the CDC20 and FBXO5 E3 ligases that target Siah1. This restores the TRF2:TRF1 ratio to block the activation of ATM and subsequent activation of TP53 that is usually associated with DNA damage-induced senescence signaling. All hTERT variants reduce DNA damage signaling, and this occurs concomitantly with telomeres assuming a more compact, denser conformation than senescent cells as measured by super-resolution microscopy. This indicates that hTERT variants induce TRF2-mediated telomere compaction that is independent of telomere length, and it plays a dominant role in regulating the DNA damage signaling that induces senescence and blocks replication of human fibroblasts. These observations support the idea that very short telomeres often seen in cancer cells may fail to induce senescence due to selective stabilization of components of the shelterin complex, increasing telomere density, rather than maintaining telomere length via the reverse transcriptase activity of hTERT.

摘要

复制性衰老发生于端粒缩短时,由ATM和TP53介导的DNA损伤信号触发,该信号会阻断复制。hTERT可延长端粒,人们认为这会阻断损伤信号及衰老的起始。我们发现,表达无法维持端粒长度的hTERT突变体的正常二倍体成纤维细胞不会启动DNA损伤信号,而是继续复制,尽管其端粒比衰老细胞的端粒短。端粒保护蛋白复合体的TRF1和TRF2 DNA结合蛋白可稳定端粒,我们发现,不同突变体hTERT蛋白的表达通过增加靶向Siah1的CDC20和FBXO5 E3连接酶的水平,降低了将TRF2靶向蛋白酶体的Siah1 E3泛素连接酶的水平。这恢复了TRF2:TRF1的比例,从而阻断了通常与DNA损伤诱导的衰老信号相关的ATM激活及随后的TP53激活。所有hTERT变体均能减少DNA损伤信号,通过超分辨率显微镜测量发现,此时端粒呈现出比衰老细胞更紧密、更致密的构象。这表明hTERT变体诱导了TRF2介导的端粒压缩,该过程与端粒长度无关,并且在调节诱导衰老并阻断人成纤维细胞复制的DNA损伤信号中起主导作用。这些观察结果支持了这样一种观点,即癌细胞中常见的极短端粒可能由于端粒保护蛋白复合体成分的选择性稳定、增加端粒密度而无法诱导衰老,而非通过hTERT的逆转录酶活性维持端粒长度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/2f4712c3fce8/ACEL-24-e70105-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/490b7a94136b/ACEL-24-e70105-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/b45217982988/ACEL-24-e70105-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/474e4eea7a5b/ACEL-24-e70105-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/7fc12c78a3be/ACEL-24-e70105-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/2a3e6d55180c/ACEL-24-e70105-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/2f4712c3fce8/ACEL-24-e70105-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/490b7a94136b/ACEL-24-e70105-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/b45217982988/ACEL-24-e70105-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/474e4eea7a5b/ACEL-24-e70105-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/7fc12c78a3be/ACEL-24-e70105-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/2a3e6d55180c/ACEL-24-e70105-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706b/12341801/2f4712c3fce8/ACEL-24-e70105-g001.jpg

相似文献

[1]
hTERT Increases TRF2 to Induce Telomere Compaction and Extend Cell Replicative Lifespan.

Aging Cell. 2025-8

[2]
Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence.

Nat Cell Biol. 2010-11-7

[3]
Expression of TRF1, TRF2, TIN2, TERT, KU70, and BRCA1 proteins is associated with telomere shortening and may contribute to multistage carcinogenesis of gastric cancer.

J Cancer Res Clin Oncol. 2010-9

[4]
Comparison of Telomere Structure in Eukaryotes.

Arch Razi Inst. 2024-12-31

[5]
Pathological forms of TDP-43 in amyotrophic lateral sclerosis (ALS) promote aberrant telomere elongation.

Biochim Biophys Acta Mol Basis Dis. 2025-5-14

[6]
p53 governs telomere regulation feedback too, via TRF2.

Aging (Albany NY). 2011-1

[7]
Discovery of a selective TRF2 inhibitor FKB04 induced telomere shortening and senescence in liver cancer cells.

Acta Pharmacol Sin. 2024-6

[8]
Regulation of shelterin proteins TERF2IP and TRF2 by the MLL2-H3K4me3-p65 axis drives hyperglycemia-dependent endothelial senescence.

Int J Biol Macromol. 2025-7

[9]
Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1.

Nature. 2007-8-30

[10]
DNA-PKcs-interacting protein KIP binding to TRF2 is required for the maintenance of functional telomeres.

Biochem J. 2014-10-1

本文引用的文献

[1]
Apoptotic stress causes mtDNA release during senescence and drives the SASP.

Nature. 2023-10

[2]
Selective pericentromeric heterochromatin dismantling caused by TP53 activation during senescence.

Nucleic Acids Res. 2022-7-22

[3]
Disease progression and clinical outcomes in telomere biology disorders.

Blood. 2022-3-24

[4]
TRF2-mediated ORC recruitment underlies telomere stability upon DNA replication stress.

Nucleic Acids Res. 2021-12-2

[5]
Telomere analysis using 3D fluorescence microscopy suggests mammalian telomere clustering in hTERT-immortalized Hs68 fibroblasts.

Commun Biol. 2019-12-4

[6]
Local enrichment of HP1alpha at telomeres alters their structure and regulation of telomere protection.

Nat Commun. 2018-9-4

[7]
Nanoscale Properties of Human Telomeres Measured with a Dual Purpose X-ray Fluorescence and Super Resolution Microscopy Gold Nanoparticle Probe.

ACS Nano. 2017-11-7

[8]
The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction.

Genes Dev. 2017-3-15

[9]
The telomeric DNA damage response occurs in the absence of chromatin decompaction.

Genes Dev. 2017-3-15

[10]
Census and evaluation of p53 target genes.

Oncogene. 2017-7-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索