Suppr超能文献

用具有双重用途的 X 射线荧光和超分辨显微镜金纳米探针测量人类端粒的纳米级特性。

Nanoscale Properties of Human Telomeres Measured with a Dual Purpose X-ray Fluorescence and Super Resolution Microscopy Gold Nanoparticle Probe.

机构信息

Centre for Biomedical Modelling and Analysis, University of Exeter , Exeter, Devon, U.K. , EX2 5DW.

Diamond Light Source , Didcot, Oxfordshire U.K. , OX11 0DE.

出版信息

ACS Nano. 2017 Dec 26;11(12):12632-12640. doi: 10.1021/acsnano.7b07064. Epub 2017 Nov 7.

Abstract

Techniques to analyze human telomeres are imperative in studying the molecular mechanism of aging and related diseases. Two important aspects of telomeres are their length in DNA base pairs (bps) and their biophysical nanometer dimensions. However, there are currently no techniques that can simultaneously measure these quantities in individual cell nuclei. Here, we develop and evaluate a telomere "dual" gold nanoparticle-fluorescent probe simultaneously compatible with both X-ray fluorescence (XRF) and super resolution microscopy. We used silver enhancement to independently visualize the spatial locations of gold nanoparticles inside the nuclei, comparing to a standard QFISH (quantitative fluorescence in situ hybridization) probe, and showed good specificity at ∼90%. For sensitivity, we calculated telomere length based on a DNA/gold binding ratio using XRF and compared to quantitative polymerase chain reaction (qPCR) measurements. The sensitivity was low (∼10%), probably because of steric interference prohibiting the relatively large 10 nm gold nanoparticles access to DNA space. We then measured the biophysical characteristics of individual telomeres using super resolution microscopy. Telomeres that have an average length of ∼10 kbps, have diameters ranging between ∼60-300 nm. Further, we treated cells with a telomere-shortening drug and showed there was a small but significant difference in telomere diameter in drug-treated vs control cells. We discuss our results in relation to the current debate surrounding telomere compaction.

摘要

分析人类端粒的技术对于研究衰老和相关疾病的分子机制至关重要。端粒的两个重要方面是它们在 DNA 碱基对 (bps) 中的长度和它们的生物物理纳米尺寸。然而,目前还没有技术可以在单个细胞核中同时测量这些数量。在这里,我们开发并评估了一种端粒“双”金纳米粒子荧光探针,该探针同时兼容 X 射线荧光 (XRF) 和超分辨率显微镜。我们使用银增强来独立可视化核内金纳米粒子的空间位置,与标准 QFISH(定量荧光原位杂交)探针进行比较,特异性约为 90%。对于灵敏度,我们使用 XRF 基于 DNA/金结合比计算端粒长度,并与定量聚合酶链反应 (qPCR) 测量结果进行比较。灵敏度较低(约 10%),可能是因为空间位阻阻止相对较大的 10nm 金纳米粒子进入 DNA 空间。然后,我们使用超分辨率显微镜测量单个端粒的生物物理特性。端粒的平均长度约为 10kbp,直径在 60-300nm 之间。此外,我们用一种缩短端粒的药物处理细胞,并表明药物处理的细胞与对照细胞相比,端粒直径有微小但显著的差异。我们将我们的结果与围绕端粒紧缩的当前争论联系起来进行讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f76e/5951601/e65972d3fec2/nn-2017-07064c_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验