Suppr超能文献

空腹血糖评分:一种基于入院情况的快速预测老年髋部骨折患者院内死亡率的工具。

FPG Score: A Rapid Admission-Based Tool for Predicting In-Hospital Mortality in Elderly Hip Fracture Patients.

作者信息

Covino Marcello, Bocchino Guido, Bocchi Maria Beatrice, Barbieri Chiara, Simeoni Benedetta, Gasbarrini Antonio, Franceschi Francesco, Maccauro Giulio, Vitiello Raffaele

机构信息

Emergency Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.

Università Cattolica del Sacro Cuore, Rome, Italy.

出版信息

Orthop Surg. 2025 Jul;17(7):2057-2067. doi: 10.1111/os.70079. Epub 2025 May 15.

Abstract

OBJECTIVE

Hip fractures in elderly patients are a major public health concern, associated with high morbidity and mortality. Early identification of high-risk patients is crucial to guide clinical decision-making, optimize resource allocation, and improve outcomes. However, existing risk prediction models, such as the Nottingham Hip Fracture Score (NHFS) and the Charlson Comorbidity Index (CCI), require laboratory or postoperative data, delaying risk stratification. This study aims to develop and validate the FPG score, a novel and simplified tool for predicting intrahospital mortality in elderly patients undergoing surgery for proximal femur fractures, using only admission data available at triage.

MATERIALS AND METHODS

This single-center, observational cohort study was conducted in two phases: a retrospective derivation phase (2015-2019) and a prospective validation phase (2020-2022). Patients aged ≥ 65 years with proximal femur fractures (AO 31A, 31B) undergoing surgical treatment were included. Exclusions involved pathological, periprosthetic, and femoral head fractures (31C). Data on demographics, comorbidities, vital signs, and laboratory values were collected at Emergency Unit triage. The primary outcome was intrahospital mortality. Univariate and multivariate logistic regression identified predictors, and ROC analysis assessed the FPG score's predictive performance, with AUC, sensitivity, and specificity evaluated using SPSS v25 and MedCalc v18.

RESULTS

In the retrospective phase, 1984 patients (median age: 83.5 years, 28.7% male) were analyzed, with an observed intrahospital mortality of 3.8% (77 patients). The FPG score demonstrated an AUC of 0.79, outperforming NHFS and CCI. A score > 2 was associated with a > 50% mortality risk, with 61% sensitivity and 80% specificity. In the validation cohort (752 patients, 4.8% mortality), the FPG score maintained strong predictive performance (AUC = 0.751).

CONCLUSION

The FPG score provides a rapid, objective, and clinically applicable tool for mortality risk assessment in elderly patients with hip fractures, allowing for immediate triage-based decision-making. Unlike NHFS and CCI, it does not require laboratory or post-admission data, making it particularly useful in emergency settings. Its integration into clinical practice may enhance patient management, improve resource allocation, and facilitate early intervention. While the score has been validated in a single-center study, further multicenter validation is needed to confirm its broader applicability. Future research should explore the integration of frailty indices and laboratory markers to refine its predictive accuracy.

摘要

目的

老年患者髋部骨折是一个重大的公共卫生问题,与高发病率和死亡率相关。早期识别高危患者对于指导临床决策、优化资源分配和改善治疗结果至关重要。然而,现有的风险预测模型,如诺丁汉髋部骨折评分(NHFS)和Charlson合并症指数(CCI),需要实验室或术后数据,从而延迟了风险分层。本研究旨在开发并验证FPG评分,这是一种新颖且简化的工具,用于预测接受股骨近端骨折手术的老年患者的院内死亡率,仅使用分诊时可获得的入院数据。

材料与方法

这项单中心观察性队列研究分两个阶段进行:回顾性推导阶段(2015 - 2019年)和前瞻性验证阶段(2020 - 2022年)。纳入年龄≥65岁且接受手术治疗的股骨近端骨折(AO 31A、31B)患者。排除病理性、假体周围和股骨头骨折(31C)。在急诊科分诊时收集人口统计学、合并症、生命体征和实验室值数据。主要结局是院内死亡率。单因素和多因素逻辑回归确定预测因素,ROC分析评估FPG评分的预测性能,使用SPSS v25和MedCalc v18评估AUC、敏感性和特异性。

结果

在回顾性阶段,分析了1984例患者(中位年龄:83.5岁,28.7%为男性),观察到的院内死亡率为3.8%(77例患者)。FPG评分的AUC为0.79,优于NHFS和CCI。评分>2与死亡率风险>50%相关,敏感性为61%,特异性为80%。在验证队列(752例患者,死亡率4.8%)中,FPG评分保持了较强的预测性能(AUC = 0.751)。

结论

FPG评分为髋部骨折老年患者的死亡风险评估提供了一种快速、客观且临床适用的工具,允许基于分诊立即做出决策。与NHFS和CCI不同,它不需要实验室或入院后数据,在急诊环境中特别有用。将其纳入临床实践可能会加强患者管理、改善资源分配并促进早期干预。虽然该评分已在单中心研究中得到验证,但需要进一步的多中心验证以确认其更广泛的适用性。未来的研究应探索衰弱指数和实验室标志物的整合,以提高其预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72e3/12214418/6d914938fb6a/OS-17-2057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验