Suppr超能文献

用于胃癌生存分析的放射基因组学分析:整合CT成像、基因表达和临床数据

Radiogenomic Profiling for Survival Analysis in Gastric Cancer: Integrating CT Imaging, Gene Expression, and Clinical Data.

作者信息

Nath Anju R, Thenmozhi Kiruthika, Natarajan Jeyakumar

机构信息

Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India.

Department of Radiology, Government Coimbatore Medical College Hospital, Coimbatore, 641018, India.

出版信息

Mol Imaging Biol. 2025 May 15. doi: 10.1007/s11307-025-02019-y.

Abstract

PURPOSE

This study aims to integrate CT (Computed Tomography) radiomic features, gene expression profiles, and clinical data to identify radiogenomic biomarkers and improve overall survival prediction in gastric cancer (GC) patients.

PROCEDURES

Quantitative radiomic analysis was performed on 37 GC CT images, alongside gene expression and clinical data, to identify biomarkers associated with overall survival. Tumor segmentation and radiomic feature extraction were followed by Pearson correlation for feature selection. Gene Set Enrichment Analysis (GSEA) identified pathways linking gene expression changes with radiomic features. Regression models were applied to explore the relationships between these pathways, radiomic features, and clinical data in survival prediction.

RESULTS

A total of 107 radiomic features were extracted, with 46 radiomic features, 1,032 genes, and one clinical feature (age) selected for further analysis. GSEA identified 29 significant KEGG pathways, mainly involving immune, signal transduction, and catabolism pathways. In survival analysis, the SVM model performed best, identifying age, genes CSF1R and CXCL12, and image features ShortRunHighGrayLevelEmphasis and Idn (Inverse Difference Normalized) as independent predictors.

CONCLUSION

This study highlights the potential of integrating imaging, genomics, and clinical data for prognosis in GC patients, with identified genes suggesting new radiogenomic biomarker candidates for future evaluation.

摘要

目的

本研究旨在整合CT(计算机断层扫描)影像组学特征、基因表达谱和临床数据,以识别影像基因组生物标志物并改善胃癌(GC)患者的总生存预测。

程序

对37例GC患者的CT图像进行定量影像组学分析,并结合基因表达和临床数据,以识别与总生存相关的生物标志物。进行肿瘤分割和影像组学特征提取,随后采用Pearson相关性进行特征选择。基因集富集分析(GSEA)确定将基因表达变化与影像组学特征联系起来的通路。应用回归模型探讨这些通路、影像组学特征和临床数据在生存预测中的关系。

结果

共提取了107个影像组学特征,选择了46个影像组学特征、1032个基因和一个临床特征(年龄)进行进一步分析。GSEA确定了29条显著的KEGG通路,主要涉及免疫、信号转导和分解代谢通路。在生存分析中,支持向量机(SVM)模型表现最佳,确定年龄、基因CSF1R和CXCL12以及影像特征短程高灰度级强调和反差异归一化(Idn)为独立预测因子。

结论

本研究突出了整合影像学、基因组学和临床数据对GC患者预后评估的潜力,所识别的基因提示了新的影像基因组生物标志物候选物以供未来评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验