Gorelik Rachel, Boland Tara M, Singh Arunima K
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85281, United States.
Computational Atomic-Scale Materials Design (CAMD), Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
ACS Appl Mater Interfaces. 2025 Jun 11;17(23):34723-34732. doi: 10.1021/acsami.5c03464. Epub 2025 May 15.
The more than 6000 2D materials predicted thus far provide a huge combinatorial space for forming functional heterostructures with bulk materials, with potential applications in nanoelectronics, sensing, and energy conversion. In this work, we investigate nearly 1000 heterostructures, the largest number of heterostructures thus far, of 2D Janus and bulk materials' surfaces using simulations and machine learning (ML) to deduce the structure-property relationships of the complex interfaces in such heterostructures. We first perform van der Waals-corrected density functional theory simulations using a high-throughput computational framework on 51 Janus 2D materials and 19 metallic, cubic phase, elemental bulk materials that exhibit low lattice mismatches and low coincident site lattices. The formation energies of the resultant 1147 Janus 2D-bulk heterostructures were analyzed, and 828 were found to be thermodynamically stable. ML models were trained on the computed data, and we found that they could predict the binding energy and -separation of 2D-bulk heterostructures with root mean squared errors (RMSEs) of 0.05 eV/atom and 0.14 Å, respectively. The feature importance of the models reveals that the properties of the bulk materials dominate the heterostructures' energies and interfacial structures heavily. These findings are in line with experimentally observed behavior of several well-known 2D materials-bulk systems. The data used within this paper are freely available in the 2D-Bulk Heterostructure Database (aiHD). The fundamental insights into 2D-bulk heterostructures and the predictive ML models developed in this work could accelerate the application of thousands of 2D-bulk heterostructures, thus stimulating research within a wide range of electronic, quantum computing, sensing, and energy applications.
迄今为止预测的6000多种二维材料为与块状材料形成功能性异质结构提供了巨大的组合空间,在纳米电子学、传感和能量转换方面具有潜在应用。在这项工作中,我们使用模拟和机器学习(ML)研究了近1000种二维Janus材料与块状材料表面的异质结构,这是迄今为止数量最多的异质结构,以推断此类异质结构中复杂界面的结构-性质关系。我们首先使用高通量计算框架对51种Janus二维材料和19种金属、立方相、元素块状材料进行范德华校正密度泛函理论模拟,这些块状材料表现出低晶格失配和低重合点阵。分析了由此产生的1147种Janus二维-块状异质结构的形成能,发现其中828种在热力学上是稳定的。基于计算数据训练了ML模型,我们发现它们可以预测二维-块状异质结构的结合能和间距,均方根误差(RMSE)分别为0.05 eV/原子和0.14 Å。模型的特征重要性表明,块状材料的性质在很大程度上主导了异质结构的能量和界面结构。这些发现与几种著名的二维材料-块状体系的实验观察行为一致。本文中使用的数据可在二维-块状异质结构数据库(aiHD)中免费获取。对二维-块状异质结构的基本见解以及在这项工作中开发的预测性ML模型可以加速数千种二维-块状异质结构的应用,从而推动广泛的电子、量子计算、传感和能量应用领域的研究。