Liu Yunxun, Wu Jiejun, Ni Xinmiao, Zheng Qingyuan, Wang Jingsong, Shen Hao, Wang Lei, Yang Rui, Weng Xiaodong
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, China.
Transl Androl Urol. 2025 Apr 30;14(4):1025-1035. doi: 10.21037/tau-2024-731. Epub 2025 Apr 27.
It can be difficult to decide clinically whether males with prostate-specific antigen (PSA) levels between 4 and 10 ng/mL should be suggested for a biopsy. This study aimed to develop a fully-automated magnetic resonance imaging (MRI) based prediction model for patients with PSA levels of 4-10 ng/mL to predict prostate cancer (PCa) preoperatively and reduce unnecessary biopsies.
A retrospective study of 574 patients with PSA of 4-10 ng/mL was conducted, split into training (n=434) and testing (n=108) groups. A no-new-Net (nnU-net) model was trained for three-dimensional (3D) prostate segmentation on T2-weighted fast spin echo (T2FSE) MRI sequences and 1,595 radiomics features were extracted with PyRadiomics. There were 113 machine learning approaches compared to construct a radiomics model after features selection. The diagnostic performance of the model was compared with PSA and PSA density (PSAD).
The nnU-net model achieved relatively higher accuracy of segmentation for the prostate region in various datasets. The average dice was 95.33%, the average relative volume error (RVE) was 1.57%, and the average 95% Hausdorff distance (HD95) value was 2.73 mm. The radiomics model [area under the curve (AUC): 0.938; 95% confidence interval (CI): 0.916-0.960] shows superior accuracy to PSA (AUC: 0.542; 95% CI: 0.474-0.611) and PSAD (AUC: 0.718; 95% CI: 0.659-0.777) in predicting PCa (P<0.05).
The automated 3D radiomics model holds the potential to reduce unnecessary biopsies and aid urologists in managing patients with PSA levels of 4-10 ng/mL.
临床上很难决定是否建议前列腺特异性抗原(PSA)水平在4至10 ng/mL之间的男性进行活检。本研究旨在开发一种基于磁共振成像(MRI)的全自动预测模型,用于PSA水平为4 - 10 ng/mL的患者,以术前预测前列腺癌(PCa)并减少不必要的活检。
对574例PSA为4 - 10 ng/mL的患者进行回顾性研究,分为训练组(n = 434)和测试组(n = 108)。使用无新网络(nnU-net)模型在T2加权快速自旋回波(T2FSE)MRI序列上进行三维(3D)前列腺分割训练,并使用PyRadiomics提取1595个放射组学特征。比较了113种机器学习方法,在特征选择后构建放射组学模型。将该模型的诊断性能与PSA和PSA密度(PSAD)进行比较。
nnU-net模型在各种数据集中对前列腺区域的分割精度相对较高。平均骰子系数为95.33%,平均相对体积误差(RVE)为1.57%,平均95%豪斯多夫距离(HD95)值为2.73 mm。放射组学模型[曲线下面积(AUC):0.938;95%置信区间(CI):0.916 - 0.960]在预测PCa方面显示出优于PSA(AUC:0.542;95% CI:0.474 - 0.611)和PSAD(AUC:0.718;95% CI:0.659 - 0.777)的准确性(P < 0.05)。
自动化3D放射组学模型具有减少不必要活检的潜力,并有助于泌尿外科医生管理PSA水平为4 - 10 ng/mL的患者。