文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于双参数MRI的影像组学分类器用于检测血清前列腺特异抗原(PSA)水平为4至10 ng/mL的前列腺癌患者。

Biparametric MRI-based radiomics classifiers for the detection of prostate cancer in patients with PSA serum levels of 4∼10 ng/mL.

作者信息

Lu Yangbai, Li Binfei, Huang Hongxing, Leng Qu, Wang Qiang, Zhong Rui, Huang Yaqiang, Li Canyong, Yuan Runqiang, Zhang Yongxin

机构信息

Department of Urology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China.

Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China.

出版信息

Front Oncol. 2022 Dec 5;12:1020317. doi: 10.3389/fonc.2022.1020317. eCollection 2022.


DOI:10.3389/fonc.2022.1020317
PMID:36582803
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9793773/
Abstract

PURPOSE: To investigate the predictive performance of the combined model by integrating clinical variables and radiomic features for the accurate detection of prostate cancer (PCa) in patients with prostate-specific antigen (PSA) serum levels of 4-10 ng/mL. METHODS: A retrospective study of 136 males (mean age, 67.3 ± 8.4 years) with Prostate Imaging-Reporting and Data System (PI-RADS) v2.1 category ≤3 lesions and PSA serum levels of 4-10 ng/mL were performed. All patients underwent multiparametric MRI at 3.0T and transrectal ultrasound-guided systematic prostate biopsy in their clinical workup. Radiomic features were extracted from axial T2-weighted images (T2WI) and apparent diffusion coefficient (ADC) maps of each patient using PyRadiomics. Pearson correlation coefficient (PCC) and recursive feature elimination (RFE) were implemented to identify the most significant radiomic features. Independent clinic-radiological factors were identified univariate and multivariate regression analyses. Seven machine-learning algorithms were compared to construct a single-layered radiomic score (ie, radscore) and multivariate regression analysis was applied to construct the fusion radscore. Finally, the radiomic nomogram was further developed by integrating useful clinic-radiological factors and fusion radscore using multivariate regression analysis. The discriminative power of the nomogram was evaluated by area under the curve (AUC), DeLong test, calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC). RESULTS: The transitional zone-specific antigen density was identified as the only independent clinic-radiological factor, which yielded an AUC of 0.592 (95% confidence interval [CI]: 0.527-0.657). The ADC radscore based on six features and Naive Bayes achieved an AUC of 0.779 (95%CI: 0.730-0.828); the T2WI radscore based on 13 features and Support Vector Machine yielded an AUC of 0.808 (95%CI: 0.761-0.855). The fusion radscore obtained an improved AUC of 0.844 (95%CI: 0.801-0.887), which was higher than the single-layered radscores (both P<0.05). The radiomic nomogram achieved the highest value among all models (all P<0.05), with an AUC of 0.872 (95%CI: 0.835-0.909). Calibration curve showed good agreement and DCA together with CIC confirmed the clinical benefits of the radiomic nomogram. CONCLUSION: The radiomic nomogram holds the potential for accurate and noninvasive identification of PCa in patients with PI-RADS ≤3 lesions and PSA of 4-10 ng/mL, which could reduce unnecessary biopsy.

摘要

目的:通过整合临床变量和影像组学特征,研究联合模型对前列腺特异性抗原(PSA)血清水平为4 - 10 ng/mL的患者中前列腺癌(PCa)的准确检测的预测性能。 方法:对136例男性(平均年龄67.3±8.4岁)进行回顾性研究,这些患者的前列腺影像报告和数据系统(PI-RADS)v2.1类别≤3级病变且PSA血清水平为4 - 10 ng/mL。所有患者在临床检查中均接受了3.0T多参数MRI和经直肠超声引导下的系统性前列腺穿刺活检。使用PyRadiomics从每位患者的轴向T2加权图像(T2WI)和表观扩散系数(ADC)图中提取影像组学特征。采用Pearson相关系数(PCC)和递归特征消除(RFE)来识别最显著的影像组学特征。通过单因素和多因素回归分析确定独立的临床-放射学因素。比较七种机器学习算法以构建单层影像组学评分(即radscore),并应用多因素回归分析构建融合radscore。最后,通过多因素回归分析整合有用的临床-放射学因素和融合radscore,进一步开发影像组学列线图。通过曲线下面积(AUC)、DeLong检验、校准曲线、决策曲线分析(DCA)和临床影响曲线(CIC)评估列线图的判别能力。 结果:移行区特异性抗原密度被确定为唯一的独立临床-放射学因素,其AUC为0.592(95%置信区间[CI]:0.527 - 0.657)。基于六个特征和朴素贝叶斯的ADC radscore的AUC为0.779(95%CI:0.730 - 0.828);基于13个特征和支持向量机的T2WI radscore的AUC为0.808(95%CI:0.761 - 0.855)。融合radscore的AUC提高到0.844(95%CI:0.801 - 0.887),高于单层radscore(均P<0.05)。影像组学列线图在所有模型中具有最高值(均P<0.05),AUC为0.872(95%CI:0.835 - 0.909)。校准曲线显示出良好的一致性,DCA和CIC共同证实了影像组学列线图的临床益处。 结论:影像组学列线图具有准确、无创识别PI-RADS≤3级病变且PSA为4 - 10 ng/mL的患者中PCa的潜力,这可以减少不必要的活检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/c3f13c01b4a8/fonc-12-1020317-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/3e404ef84373/fonc-12-1020317-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/108492d4ab2f/fonc-12-1020317-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/08f8f25afbcd/fonc-12-1020317-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/4c14515e3efc/fonc-12-1020317-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/c3f13c01b4a8/fonc-12-1020317-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/3e404ef84373/fonc-12-1020317-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/108492d4ab2f/fonc-12-1020317-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/08f8f25afbcd/fonc-12-1020317-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/4c14515e3efc/fonc-12-1020317-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e37/9793773/c3f13c01b4a8/fonc-12-1020317-g005.jpg

相似文献

[1]
Biparametric MRI-based radiomics classifiers for the detection of prostate cancer in patients with PSA serum levels of 4∼10 ng/mL.

Front Oncol. 2022-12-5

[2]
Utility of Clinical-Radiomic Model to Identify Clinically Significant Prostate Cancer in Biparametric MRI PI-RADS V2.1 Category 3 Lesions.

Front Oncol. 2022-2-24

[3]
MRI-Based Radiomics Nomogram for Predicting Prostate Cancer with Gray-Zone Prostate-Specific Antigen Levels to Reduce Unnecessary Biopsies.

Diagnostics (Basel). 2022-12-1

[4]
MRI-Based Surrogate Imaging Markers of Aggressiveness in Prostate Cancer: Development of a Machine Learning Model Based on Radiomic Features.

Diagnostics (Basel). 2023-8-28

[5]
Utility of machine learning of apparent diffusion coefficient (ADC) and T2-weighted (T2W) radiomic features in PI-RADS version 2.1 category 3 lesions to predict prostate cancer diagnosis.

Abdom Radiol (NY). 2021-12

[6]
Multiparametric MRI-Based Radiomics for Prostate Cancer Screening With PSA in 4-10 ng/mL to Reduce Unnecessary Biopsies.

J Magn Reson Imaging. 2020-6

[7]
Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2.

J Magn Reson Imaging. 2018-9-19

[8]
MRI-based multiregional radiomics for predicting lymph nodes status and prognosis in patients with resectable rectal cancer.

Front Oncol. 2023-1-4

[9]
Development and Validation of a Radiomics Nomogram for Predicting Clinically Significant Prostate Cancer in PI-RADS 3 Lesions.

Front Oncol. 2022-1-26

[10]
Development of a nomogram combining multiparametric magnetic resonance imaging and PSA-related parameters to enhance the detection of clinically significant cancer across different region.

Prostate. 2022-4

引用本文的文献

[1]
The Role of Radiomic Analysis and Different Machine Learning Models in Prostate Cancer Diagnosis.

J Imaging. 2025-7-23

[2]
Clinical-radiomics hybrid modeling outperforms conventional models: machine learning enhances stratification of adverse prognostic features in prostate cancer.

Front Oncol. 2025-8-6

[3]
Predicting clinically significant prostate cancer in PI-RADS 3 lesions using MRI-based radiomics: a literature review of methodological variations and performance.

Abdom Radiol (NY). 2025-4-2

[4]
Comparison in prostate cancer diagnosis with PSA 4-10 ng/mL: radiomics-based model VS. PI-RADS v2.1.

BMC Urol. 2024-10-23

[5]
Radiomic Pipelines for Prostate Cancer in External Beam Radiation Therapy: A Review of Methods and Future Directions.

J Clin Med. 2024-7-3

[6]
MRI-based machine learning models predict the malignant biological behavior of meningioma.

BMC Med Imaging. 2023-9-27

[7]
Predicting prostate cancer in men with PSA levels of 4-10 ng/mL: MRI-based radiomics can help junior radiologists improve the diagnostic performance.

Sci Rep. 2023-3-24

本文引用的文献

[1]
Inter-reader agreement of the prostate imaging reporting and data system version v2.1 for detection of prostate cancer: A systematic review and meta-analysis.

Front Oncol. 2022-9-29

[2]
Prediction of clinically significant prostate cancer with a multimodal MRI-based radiomics nomogram.

Front Oncol. 2022-7-15

[3]
Emerging MR methods for improved diagnosis of prostate cancer by multiparametric MRI.

MAGMA. 2022-8

[4]
Evaluation of the Efficiency of MRI-Based Radiomics Classifiers in the Diagnosis of Prostate Lesions.

Front Oncol. 2022-7-5

[5]
Avoiding Unnecessary Systematic Biopsy in Clinically Significant Prostate Cancer: Comparison Between MRI-Based Radiomics Model and PI-RADS Category.

J Magn Reson Imaging. 2023-2

[6]
A narrative review of biparametric MRI (bpMRI) implementation on screening, detection, and the overall accuracy for prostate cancer.

Ther Adv Urol. 2022-5-4

[7]
Application Value of Radiomic Nomogram in the Differential Diagnosis of Prostate Cancer and Hyperplasia.

Front Oncol. 2022-4-14

[8]
Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics.

Cancers (Basel). 2021-12-21

[9]
Can machine learning-based analysis of multiparameter MRI and clinical parameters improve the performance of clinically significant prostate cancer diagnosis?

Int J Comput Assist Radiol Surg. 2021-12

[10]
Utility of machine learning of apparent diffusion coefficient (ADC) and T2-weighted (T2W) radiomic features in PI-RADS version 2.1 category 3 lesions to predict prostate cancer diagnosis.

Abdom Radiol (NY). 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索