文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

极地地区冰川前沿地带的抗生素耐药基因组

Antibiotic resistome in the glacier forelands of polar regions.

作者信息

Thajudeen Jabir, Venkatachalam Siddarthan, Vipindas Puthiya Veettil

机构信息

Arctic Ecology and Biogeochemistry Section, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India.

出版信息

Appl Environ Microbiol. 2025 Jun 18;91(6):e0076225. doi: 10.1128/aem.00762-25. Epub 2025 May 16.


DOI:10.1128/aem.00762-25
PMID:40377330
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12175520/
Abstract

UNLABELLED: Antibiotic resistance genes (ARGs) pose a significant threat, exacerbated by climate change impacts on polar regions, particularly melting glaciers and permafrost. While ancient antibiotic resistance exists in the environments, the release and dissemination of ARGs remain poorly understood. This study investigated ARG composition and distribution in 43 metagenomes from Arctic and Antarctic glacier forelands. We identified 154 ARGs, predominantly bacitracin resistance, followed by rifamycin, fosfomycin, vancomycin, tetracycline, and beta-lactam resistance genes. Significant correlations were observed between ARGs and mobile genetic elements (MGEs), with 20 ARGs associated with MGEs. Actinomycetota and Pseudomonadota were the primary ARG-carrying phyla. Metagenome-assembled genomes revealed sp., sp., and sp. as major ARG-harboring pathogens in the glacier forelands. Evolutionarily adapted, distinct ancient ARGs were abundant in the polar environments, varying between different geographic regions. The environmental parameters such as pH and total organic carbon significantly influenced the ARG distribution in the Arctic and Antarctic glacier forelands. This study provides crucial baseline data on antimicrobial resistance, highlighting potential risks associated with rapid environmental change in the regions. IMPORTANCE: Antibiotic resistance poses a significant global health threat, exacerbated by the release of antibiotic resistance genes from melting glaciers and permafrost due to climate change. This study provides crucial baseline data on the composition and distribution of antibiotic resistance genes in these vulnerable polar environments, which is essential for understanding and mitigating the risks associated with their release. The findings have far-reaching implications for global health security and emphasize the need for further research to address this emerging threat.

摘要

未标注:抗生素抗性基因(ARGs)构成了重大威胁,气候变化对极地地区的影响,尤其是冰川和永久冻土融化,使这一威胁更加严重。虽然环境中存在古老的抗生素抗性,但ARGs的释放和传播仍知之甚少。本研究调查了北极和南极冰川前沿43个宏基因组中ARGs的组成和分布。我们鉴定出154种ARGs,主要是杆菌肽抗性基因,其次是利福霉素、磷霉素、万古霉素、四环素和β-内酰胺抗性基因。观察到ARGs与移动遗传元件(MGEs)之间存在显著相关性,其中20种ARGs与MGEs相关。放线菌门和假单胞菌门是主要携带ARGs的门类。宏基因组组装基因组显示,[具体菌名1]、[具体菌名2]和[具体菌名3]是冰川前沿主要的携带ARGs的病原体。在极地环境中,经过进化适应的独特古老ARGs丰富多样,不同地理区域之间存在差异。pH值和总有机碳等环境参数显著影响了北极和南极冰川前沿的ARGs分布。本研究提供了关于抗菌抗性的关键基线数据,突出了该地区快速环境变化带来的潜在风险。 重要性:抗生素抗性对全球健康构成重大威胁,气候变化导致冰川和永久冻土融化释放抗生素抗性基因,使这一威胁更加严重。本研究提供了这些脆弱极地环境中抗生素抗性基因组成和分布的关键基线数据,这对于理解和减轻与它们释放相关的风险至关重要。这些发现对全球健康安全具有深远影响,并强调需要进一步研究以应对这一新兴威胁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/6b63aa3c3f6e/aem.00762-25.f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/343b00154e1f/aem.00762-25.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/a47029c67a80/aem.00762-25.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/d766400d0a0c/aem.00762-25.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/c257f3fedfd2/aem.00762-25.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/c1cabecc9fa9/aem.00762-25.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/c814e3c5fc1b/aem.00762-25.f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/f550118d6682/aem.00762-25.f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/6b63aa3c3f6e/aem.00762-25.f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/343b00154e1f/aem.00762-25.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/a47029c67a80/aem.00762-25.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/d766400d0a0c/aem.00762-25.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/c257f3fedfd2/aem.00762-25.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/c1cabecc9fa9/aem.00762-25.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/c814e3c5fc1b/aem.00762-25.f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/f550118d6682/aem.00762-25.f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9084/12175520/6b63aa3c3f6e/aem.00762-25.f008.jpg

相似文献

[1]
Antibiotic resistome in the glacier forelands of polar regions.

Appl Environ Microbiol. 2025-6-18

[2]
The risk of pathogenicity and antibiotic resistance in deep-sea cold seep microorganisms.

mSystems. 2025-6-17

[3]
Determinism and stochasticity drive microbial community assembly and microbial interactions in calcareous glacier forefields.

Appl Environ Microbiol. 2025-6-18

[4]
Chemoautotrophy in subzero environments and the potential for cold-adapted Rubisco.

Appl Environ Microbiol. 2025-6-18

[5]
Potential pathogens and antimicrobial resistance genes in household environments: a study of soil floors and cow dung in rural Bangladesh.

Appl Environ Microbiol. 2025-6-18

[6]
Genomic characterization of antimicrobial resistance and mobile genetic elements in swine gut bacteria isolated from a Canadian research farm.

Anim Microbiome. 2025-6-18

[7]
The effect of non-antibiotic pharmaceuticals and personal care products on antibiotic resistance genes in landfill refuse should not be underestimated.

Waste Manag. 2025-6-17

[8]
Integrated 16S rRNA and metagenomic sequencing reveals the distribution of key antibiotic resistance genes in duck gut microbiota.

Poult Sci. 2025-4-23

[9]
Hospital effluent in a low-resistance setting is responsible for dissemination of novel antibiotic resistance genes into the marine environment.

Ecotoxicol Environ Saf. 2025-8

[10]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

本文引用的文献

[1]
Microbial communities and mobile genetic elements determine the variations of antibiotic resistance genes for a continuous year in the urban river deciphered by metagenome assembly.

Environ Pollut. 2024-12-1

[2]
Metagenomics uncovers microbiome and resistome in soil and reindeer faeces from Ny-Ålesund (Svalbard, High Arctic).

Environ Res. 2024-12-1

[3]
Complex heatmap visualization.

Imeta. 2022-8-1

[4]
Climate change, melting cryosphere and frozen pathogens: Should we worry…?

Environ Sustain (Singap). 2021

[5]
Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool.

Nucleic Acids Res. 2024-7-5

[6]
Comparative analysis of characteristics of antibiotic resistomes between Arctic soils and representative contaminated samples using metagenomic approaches.

J Hazard Mater. 2024-5-5

[7]
Antibiotic resistance genes in integrated surface ice, cryoconite, and glacier-fed stream in a mountain glacier in Central Asia.

Environ Int. 2024-2

[8]
Antibiotic resistance in wildlife from Antarctic Peninsula.

Sci Total Environ. 2024-3-15

[9]
Antibiotic resistance is a growing threat - is climate change making it worse?

Nature. 2024-1-8

[10]
Metagenomic insights into novel microbial lineages with distinct ecological functions in the Arctic glacier foreland ecosystems.

Environ Res. 2024-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索