Suppr超能文献

用于固态锂电池的聚合物金属有机纳米胶囊网络的分子设计

Molecular Design of Polymeric Metal-Organic Nanocapsule Networks for Solid-State Lithium Batteries.

作者信息

Ma Xin-Yue, Wang Xiao-Xue, Guan De-Hui, Miao Cheng-Lin, Wang Huan-Feng, Zhu Qing-Yao, Xu Ji-Jing

机构信息

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.

International Center of Future Science, Jilin University, Changchun, 130012, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Jul;64(29):e202504767. doi: 10.1002/anie.202504767. Epub 2025 May 24.

Abstract

Solid-state electrolytes (SSEs) have emerged as high-priority materials for ensuring the safe operation of solid-state lithium (Li) batteries. However, current SSEs still face challenges of balancing stability and ionic conductivity, which limits their practical applications in solid-state Li batteries. Here, we report a general strategy for achieving high-performance SSEs by constructing a Li-conducted polymeric metal-organic nanocapsule (PolyMONC(Li)) network through molecular design. With the unique cage structure and pore size, metal-organic nanocapsule (MONC) can achieve excellent anion confinement effects. The PolyMONC(Li) network with continuous Li conduction pathways serves as a solid electrolyte exhibiting a high ionic conductivity (0.18 mS cm at 25 °C) and a high Li transference number (0.83). Combining the two superiorities of optimal balance between mechanical strength and excellent Li conductivity, the PolyMONC(Li) can still restrain the dendrite growth and prevent Li symmetric batteries from short-circuiting even over 900 h cycling. The PolyMONC(Li)-based SSEs Li-metal batteries achieved a higher specific capacity than common polymer electrolytes such as polyethylene oxide-based SSE. Additionally, taking advantage of the PolyMONC(Li) electrode binder, the solid-state Li-O battery achieves a stable cycling over 400 cycles. This work provides a comprehensive guideline for developing porous solids from molecule design to practical application.

摘要

固态电解质(SSEs)已成为确保固态锂(Li)电池安全运行的高优先级材料。然而,目前的固态电解质仍面临着平衡稳定性和离子电导率的挑战,这限制了它们在固态锂电池中的实际应用。在此,我们报告了一种通用策略,即通过分子设计构建锂导电聚合物金属有机纳米胶囊(PolyMONC(Li))网络来实现高性能固态电解质。金属有机纳米胶囊(MONC)具有独特的笼状结构和孔径,能够实现优异的阴离子限制效应。具有连续锂传导路径的PolyMONC(Li)网络作为一种固体电解质,表现出高离子电导率(25℃时为0.18 mS cm)和高锂迁移数(0.83)。结合了机械强度和优异锂导电性之间最佳平衡的两个优势,即使在超过900小时的循环中,PolyMONC(Li)仍能抑制枝晶生长并防止锂对称电池短路。基于PolyMONC(Li)的固态电解质锂金属电池比聚环氧乙烷基固态电解质等常见聚合物电解质具有更高的比容量。此外,利用PolyMONC(Li)电极粘合剂,固态锂氧电池实现了超过400次循环的稳定循环。这项工作为从分子设计到实际应用开发多孔固体提供了全面的指导方针。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验