Suppr超能文献

SAMS-Net:融合注意力机制和多尺度特征网络的肿瘤浸润淋巴细胞分割。

SAMS-Net: Fusion of attention mechanism and multi-scale features network for tumor infiltrating lymphocytes segmentation.

机构信息

College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.

Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China.

出版信息

Math Biosci Eng. 2023 Jan;20(2):2964-2979. doi: 10.3934/mbe.2023140. Epub 2022 Dec 1.

Abstract

Automatic segmentation of tumor-infiltrating lymphocytes (TILs) from pathological images is essential for the prognosis and treatment of cancer. Deep learning technology has achieved great success in the segmentation task. It is still a challenge to realize accurate segmentation of TILs due to the phenomenon of blurred edges and adhesion of cells. To alleviate these problems, a squeeze-and-attention and multi-scale feature fusion network (SAMS-Net) based on codec structure, namely SAMS-Net, is proposed for the segmentation of TILs. Specifically, SAMS-Net utilizes the squeeze-and-attention module with the residual structure to fuse local and global context features and boost the spatial relevance of TILs images. Besides, a multi-scale feature fusion module is designed to capture TILs with large size differences by combining context information. The residual structure module integrates feature maps from different resolutions to strengthen the spatial resolution and offset the loss of spatial details. SAMS-Net is evaluated on the public TILs dataset and achieved dice similarity coefficient (DSC) of 87.2% and Intersection of Union (IoU) of 77.5%, which improved by 2.5% and 3.8% compared with UNet. These results demonstrate the great potential of SAMS-Net in TILs analysis and can further provide important evidence for the prognosis and treatment of cancer.

摘要

自动分割肿瘤浸润淋巴细胞(TILs)的病理图像对于癌症的预后和治疗至关重要。深度学习技术在分割任务中取得了巨大的成功。由于细胞边缘模糊和粘连的现象,实现 TILs 的精确分割仍然是一个挑战。为了解决这些问题,提出了一种基于编解码器结构的 squeeze-and-attention 和多尺度特征融合网络(SAMS-Net),用于 TILs 的分割。具体来说,SAMS-Net 利用带有残差结构的 squeeze-and-attention 模块融合局部和全局上下文特征,增强 TILs 图像的空间相关性。此外,设计了一个多尺度特征融合模块,通过结合上下文信息来捕获具有较大大小差异的 TILs。残差结构模块整合来自不同分辨率的特征图,以增强空间分辨率并弥补空间细节的损失。在公共 TILs 数据集上对 SAMS-Net 进行了评估,其 Dice 相似系数(DSC)为 87.2%,交并比(IoU)为 77.5%,与 UNet 相比分别提高了 2.5%和 3.8%。这些结果表明 SAMS-Net 在 TILs 分析中具有巨大的潜力,可以为癌症的预后和治疗提供重要证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验