基于金量子点修饰共价有机框架的自级联自激活纳米酶用于快速灵敏检测活细菌

Self-cascade and self-activated nanozyme based on Au quantum dot modified covalent organic framework for rapid and sensitive detection of live bacteria.

作者信息

Tang Yan, Ma Hongmei, Shen Hao

机构信息

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.

The Research Institute of Advanced Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.

出版信息

Mikrochim Acta. 2025 May 19;192(6):362. doi: 10.1007/s00604-025-07182-1.

Abstract

Multi-enzymes-guided cascade biocatalysis plays an important role in both nature and industry. Nevertheless, the inherent defects of natural enzymes (e.g., unattractive robustness, sensitivity, and reproducibility under severe catalytic environments) have limited their wider employment. Here, a self-cascade nanozyme was synthesized via depositing Au quantum dots (Au QDs) on iron ions and cysteine-doped porphyrin covalent organic framework (Fe@cpCOF). The in situ introduction of cysteine created a beneficial microenvironment around the iron-porphyrin catalytic center, facilitating the activity of the nanozyme. Through the regulation of Au QDs deposition amount on the surface of Fe@cpCOF, the synthetic nanozyme not only possessed robust glucose oxidase (GOx) mimicking activity but also demonstrated promoted peroxidase (POD) mimicking activity. In the self-cascade system, the innocuous glucose could be constantly transformed to sufficient gluconic acid and HO by Au QDs, preventing the direct application of noxious HO and reducing the detrimental by-effects. In addition, the product gluconic acid decreases the pH of the microenvironment, significantly activating the POD-like bioactivity of Fe@cpCOF. The obtained Au-Fe@cpCOF nanozyme was utilized to simulate the multi-step biocatalytic process in nature, thus constructing an enzyme-free self-cascade biocatalytic sensing platform for specific and wide-spectrum analysis of live bacteria. This study provides a facile assay for pathogen detection in both clinical and daily life.

摘要

多酶引导的级联生物催化在自然界和工业中都发挥着重要作用。然而,天然酶的固有缺陷(例如,在严苛催化环境下缺乏吸引力的稳健性、敏感性和可重复性)限制了它们的更广泛应用。在此,通过将金量子点(Au QDs)沉积在铁离子和半胱氨酸掺杂的卟啉共价有机框架(Fe@cpCOF)上合成了一种自级联纳米酶。半胱氨酸的原位引入在铁卟啉催化中心周围创造了一个有利的微环境,促进了纳米酶的活性。通过调节Au QDs在Fe@cpCOF表面的沉积量,合成的纳米酶不仅具有强大的葡萄糖氧化酶(GOx)模拟活性,还表现出增强的过氧化物酶(POD)模拟活性。在自级联系统中,无毒的葡萄糖可被Au QDs不断转化为足够的葡萄糖酸和HO,避免了有害HO的直接应用并减少了有害副作用。此外,产物葡萄糖酸降低了微环境的pH值,显著激活了Fe@cpCOF的类POD生物活性。所获得的Au-Fe@cpCOF纳米酶被用于模拟自然界中的多步生物催化过程,从而构建了一个用于活细菌特异性和广谱分析的无酶自级联生物催化传感平台。本研究为临床和日常生活中的病原体检测提供了一种简便的检测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索