Tran Quoc-Anh, Agrawal Meenal, Häusler Michael, Hörmann Johannes, Moqadam Mohsen Sadeqi, Redhammer Günther J, Sellæg Ellingsen Ingeborg, Din Mir Mehraj Ud, Vullum Per Erik, Zettl Roman, Danner Timo, Latz Arnulf, Hennige Volker, Brunner Roland, Rettenwander Daniel
Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, 7034, Norway.
Christian Doppler Laboratory for Solid-State Batteries, NTNU Norwegian University of Science and Technology, Trondheim, 7034, Norway.
Adv Mater. 2025 Jul;37(30):e2501592. doi: 10.1002/adma.202501592. Epub 2025 May 19.
Solid-state batteries are transformative solutions for electric vehicles, offering superior energy density and safety. Sulfide-based solid electrolytes like Li₆PS₅Cl (LPSCl) combine high ionic conductivity and mechanical adaptability, but challenges remain in scaling up high-performance separator tapes due to particle size distribution (PSD) and processing constraints. This study investigates the uni-axial densification of slurry-casted LPSCl tapes, focusing on PSD refinement and compaction pressure. Wet milling has been identified to effectively reduce PSD to submicron levels while preserving structural integrity and near-pristine conductivity. A critical pressure threshold (≈350 MPa) for tape-casted LPSCl slurries (2.5% hydrated poly(acrylonitrile-co-butadiene)) is identified, where ionic conductivity peaks due to particle fusion and the formation of conductive networks. However, open porosity (≈30%), particularly along the densification direction, and surface irregularities persist. These structural issues have significant implications for battery performance. For example, surface roughness and interfacial voids lead to localized current focusing, with current densities exceeding applied values by over 20 times. Percolating porosity accelerates dendritic failure modes, undermining stability and limiting cycling rates. This work underscores the need for optimized powder processing and densification techniques to enhance scalability and performance, advancing LPSCl-based separators for the practical adoption of solid-state batteries in electric vehicles and other high-energy applications.
固态电池是电动汽车的变革性解决方案,具有卓越的能量密度和安全性。像Li₆PS₅Cl(LPSCl)这样的硫化物基固体电解质兼具高离子电导率和机械适应性,但由于粒度分布(PSD)和加工限制,在扩大高性能隔离带规模方面仍存在挑战。本研究调查了流延铸造LPSCl带材的单轴致密化,重点关注PSD细化和压实压力。已确定湿磨可有效将PSD降低至亚微米水平,同时保持结构完整性和接近原始的电导率。确定了流延铸造LPSCl浆料(2.5%水合聚(丙烯腈 - 共 - 丁二烯))的临界压力阈值(约350 MPa),由于颗粒融合和导电网络的形成,离子电导率在此处达到峰值。然而,开孔率(约30%),特别是沿致密化方向,以及表面不规则性仍然存在。这些结构问题对电池性能有重大影响。例如,表面粗糙度和界面空隙会导致局部电流集中,电流密度超过施加值20倍以上。渗透孔隙率会加速枝晶失效模式,破坏稳定性并限制循环速率。这项工作强调了优化粉末加工和致密化技术以提高可扩展性和性能的必要性,推动基于LPSCl的隔离带在电动汽车和其他高能量应用中实际采用固态电池。