文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A deep-learning model for predicting post-stroke cognitive impairment based on brain network damage.

作者信息

Bai Chen, Leng Yilin, Xiao Haixing, Li Lei, Cui Wenju, Li Tan, Dong Yuefang, Zheng Jian, Cai Xiuying

机构信息

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.

出版信息

Quant Imaging Med Surg. 2025 May 1;15(5):3964-3981. doi: 10.21037/qims-24-2010. Epub 2025 Apr 21.


DOI:10.21037/qims-24-2010
PMID:40384653
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12084723/
Abstract

BACKGROUND: Post-stroke cognitive impairment (PSCI) is a common and severe complication following acute lacunar stroke (ALS). Due to the limitations of current assessment tools and imaging methods, the early diagnosis of PSCI within 3 months of ALS remaining challenging. This study aimed to develop an effective, reliable, and accurate deep-learning method to predict PSCI within 3 months of ALS. METHODS: In total, 100 ALS patients were enrolled in the study, of whom 39 were diagnosed with PSCI and 61 were non-PSCI. First, we quantified three-dimensional (3D) gray-matter damage and white-matter tract disconnection, providing both regional damage (RD) and structural disconnection (SDC) higher-dimensional insights into brain network disruption. Second, we developed a novel deep-learning model based on ResNet18, integrating 3D RD, SDC, and diffusion-weighted imaging (DWI) to provide a comprehensive analysis of brain network integrity and predict PSCI. Finally, we compared the performance of our method with other methods, and visualized brain network damage associated with PSCI. RESULTS: Our model showed strong predictive performance and had a mean accuracy (ACC) of 0.820±0.024, an area under the curve (AUC) of 0.795±0.068, a sensitivity (SEN) of 0.746±0.121, a specificity (SPE) of 0.869±0.044, and a F1-score (F1) of 0.760±0.050 in the five-fold cross-validation, outperforming existing models. In the PSCI patients, brain network damage significantly affected the salience, default mode, and somatic motor networks. CONCLUSIONS: This study not only established a model that can accurately predict PSCI, it also identified potential targets for symptom-based treatments, offering new insights into PSCI.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/04bf02d05974/qims-15-05-3964-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/1fccaf2a5c8e/qims-15-05-3964-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/028356dd0e29/qims-15-05-3964-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/4cf98a289036/qims-15-05-3964-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/78586b7e8e2d/qims-15-05-3964-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/2cf352c9d144/qims-15-05-3964-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/2267754511ff/qims-15-05-3964-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/87011ce2d1a1/qims-15-05-3964-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/c33a1d314bee/qims-15-05-3964-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/04bf02d05974/qims-15-05-3964-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/1fccaf2a5c8e/qims-15-05-3964-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/028356dd0e29/qims-15-05-3964-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/4cf98a289036/qims-15-05-3964-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/78586b7e8e2d/qims-15-05-3964-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/2cf352c9d144/qims-15-05-3964-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/2267754511ff/qims-15-05-3964-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/87011ce2d1a1/qims-15-05-3964-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/c33a1d314bee/qims-15-05-3964-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5005/12084723/04bf02d05974/qims-15-05-3964-f9.jpg

相似文献

[1]
A deep-learning model for predicting post-stroke cognitive impairment based on brain network damage.

Quant Imaging Med Surg. 2025-5-1

[2]
Incremental Value of Stroke-Induced Structural Disconnection in Predicting Global Cognitive Impairment After Stroke.

Stroke. 2023-5

[3]
Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts.

Lancet Neurol. 2021-6

[4]
Network impact score is an independent predictor of post-stroke cognitive impairment: A multicenter cohort study in 2341 patients with acute ischemic stroke.

Neuroimage Clin. 2022

[5]
Cognitive Impairment after Mild Stroke: Development and Validation of the SIGNAL2 Risk Score.

J Alzheimers Dis. 2016

[6]
Web-based artificial intelligence to predict cognitive impairment following stroke: A multicenter study.

J Stroke Cerebrovasc Dis. 2024-8

[7]
High serum amyloid A predicts risk of cognitive impairment after lacunar infarction: Development and validation of a nomogram.

Front Neurol. 2022-8-24

[8]
Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning.

Alzheimers Res Ther. 2023-8-31

[9]
Network dynamics in post-stroke cognitive impairment: insights from effective connectivity analysis.

Brain Imaging Behav. 2025-4

[10]
Development and validation of a clinical model (DREAM-LDL) for post-stroke cognitive impairment at 6 months.

Aging (Albany NY). 2021-9-10

引用本文的文献

[1]
Multimodal dynamic hierarchical clustering model for post-stroke cognitive impairment prediction.

Vis Comput Ind Biomed Art. 2025-9-1

本文引用的文献

[1]
Prevalence and Risk Factors of Poststroke Cognitive Impairment: A Systematic Review and Meta-Analysis.

Public Health Nurs. 2025

[2]
Disconnection-Based Prediction of Poststroke Dysphagia.

AJNR Am J Neuroradiol. 2023-12-29

[3]
Regional white matter hyperintensity volume predicts persistent cognitive impairment in acute lacunar infarct patients.

Front Neurol. 2023-10-10

[4]
Predicting post-stroke cognitive impairment using machine learning: A prospective cohort study.

J Stroke Cerebrovasc Dis. 2023-11

[5]
Cognitive Impairment After Ischemic and Hemorrhagic Stroke: A Scientific Statement From the American Heart Association/American Stroke Association.

Stroke. 2023-6

[6]
Incremental Value of Stroke-Induced Structural Disconnection in Predicting Global Cognitive Impairment After Stroke.

Stroke. 2023-5

[7]
Structural disconnection-based prediction of poststroke depression.

Transl Psychiatry. 2022-11-3

[8]
Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging.

J Cereb Blood Flow Metab. 2023-2

[9]
Vascular Cognitive Impairment After Mild Stroke: Connectomic Insights, Neuroimaging, and Knowledge Translation.

Front Neurosci. 2022-7-7

[10]
Predictors of post-stroke cognitive impairment using acute structural MRI neuroimaging: A systematic review and meta-analysis.

Int J Stroke. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索