Suppr超能文献

5-氮杂胞苷对[具体对象]耐盐碱能力的增强作用及潜在的生理和转录组学机制

Enhancing effect of 5-azacytidine on saline-alkaline resistance of and underlying physiological and transcriptomic mechanisms.

作者信息

Bi Xiao Xu, Wang Kai, Li Xiaoqin, Chen Jiao, Yang Jin, Yan Jin, Wang Guijiao, Zhang Yongfu

机构信息

School of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan, China.

出版信息

PeerJ. 2025 May 14;13:e19285. doi: 10.7717/peerj.19285. eCollection 2025.

Abstract

Saline-alkaline stress is a common problem in cultivation. In this study, the enhancing effects of 5-azacytidine (5-AzaC) on the resistance of to saline-alkaline stress and the underlying mechanisms were investigated. Plant height, stem diameter, biomass, root length, fresh weight of root, and root/shoot ratio of 6-month-old seedlings were measured after saline-alkaline stress with or without 5-AzaC treatment. Moreover, the contents of photosynthetic pigments, malondialdehyde (MDA), HO, sodium, soluble sugar, and proline; activities of superoxide dismutase, peroxidase (POD), and catalase (CAT); and anatomical structures of root, stem, and leaf were assessed. Furthermore, comparative transcriptome sequencing was performed. The results demonstrated that growth and development of were severely inhibited under saline-alkaline stress, suggesting that the seedlings were exposed to severe oxidative and osmotic stresses. Treatment with exogenous 5-AzaC could significantly relieve the symptoms of saline-alkaline stress in . Under saline-alkaline stress, 5-AzaC could increase the stem diameter, biomass, root length, fresh weight of root, and root/shoot ratio and minimize damages to the anatomical structure. Moreover, absorption of Na was reduced; ionic balance was maintained; POD and CAT activities were significantly improved; proline and soluble sugar contents increased, and HO and MDA contents decreased. Transcriptome analysis revealed that 5-AzaC functioned via regulating KEGG pathways such as plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, amino sugar and nucleotide sugar metabolism, and glutathione metabolism under saline-alkaline stress. Particularly, enhanced expression of genes from the auxin pathway in plant hormone signal transduction; the lignin synthetic pathway in phenylpropanoid biosynthesis; and photosystem II, photosystem I, photosynthetic electron transport, and F-type ATP pathway in photosynthesis may be related to 5-AzaC-induced saline-alkaline resistance. The results provided theoretical references for cultivation in saline-alkaline soil and application of 5-AzaC to improve saline-alkaline tolerance in plants.

摘要

盐碱胁迫是栽培中常见的问题。本研究探讨了5-氮杂胞苷(5-AzaC)对[植物名称未明确]耐盐碱胁迫的增强作用及其潜在机制。在有或无5-AzaC处理的盐碱胁迫后,测量了6月龄[植物名称未明确]幼苗的株高、茎粗、生物量、根长、根鲜重和根冠比。此外,还评估了光合色素、丙二醛(MDA)、过氧化氢(HO)、钠、可溶性糖和脯氨酸的含量;超氧化物歧化酶、过氧化物酶(POD)和过氧化氢酶(CAT)的活性;以及根、茎和叶的解剖结构。此外,还进行了比较转录组测序。结果表明,[植物名称未明确]在盐碱胁迫下的生长发育受到严重抑制,表明幼苗受到严重的氧化和渗透胁迫。外源5-AzaC处理可显著缓解[植物名称未明确]的盐碱胁迫症状。在盐碱胁迫下,5-AzaC可增加茎粗、生物量、根长、根鲜重和根冠比,并使解剖结构的损伤最小化。此外,钠的吸收减少;离子平衡得以维持;POD和CAT活性显著提高;脯氨酸和可溶性糖含量增加,HO和MDA含量降低。转录组分析表明,5-AzaC在盐碱胁迫下通过调节植物激素信号转导、苯丙烷生物合成、光合作用、氨基糖和核苷酸糖代谢以及谷胱甘肽代谢等KEGG途径发挥作用。特别是,植物激素信号转导中生长素途径基因的表达增强;苯丙烷生物合成中木质素合成途径;以及光合作用中的光系统II、光系统I、光合电子传递和F型ATP途径可能与5-AzaC诱导的耐盐碱能力有关。这些结果为[植物名称未明确]在盐碱土壤中的栽培以及应用5-AzaC提高植物耐盐碱能力提供了理论参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93c9/12085116/91c48c08b31c/peerj-13-19285-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验