Suppr超能文献

具有标记点过程权重的连续时间因果推断:以钠-葡萄糖协同转运蛋白2抑制剂药物与尿路感染为例

Continuous-Time Causal Inference With Marked Point Process Weights: An Example on Sodium-Glucose Co-Transporters 2 Inhibitor Medications and Urinary Tract Infection.

作者信息

Kalia Sumeet, Saarela Olli, Chen Tao, O'Neill Braden, Meaney Christopher, Moineddin Rahim, Aliarzadeh Babak, Sullivan Frank, Greiver Michelle

机构信息

Department of Statistics, University of Manitoba, Winnipeg, Canada.

Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada.

出版信息

Stat Med. 2025 May;44(10-12):e70102. doi: 10.1002/sim.70102.

Abstract

Treatment-confounder feedback is present in time-to-recurrent or longitudinal event analysis when time-dependent confounders are themselves influenced by previous treatments. Conventional models produce misleading statistical inference of causal effects due to conditioning on these factors on the causal pathway. Marginal structural models are often applied to quantify the causal treatment effect, estimated using longitudinal weights that mimic the randomization procedure by balancing the covariate distributions across the treatment groups. The weights are usually constructed in discrete time intervals, which is appropriate if the follow-up visits are scheduled and regular. However, in primary care, visit times can be irregular and informative, and the treatment history consists of duration and doses. This can be modeled through a continuous-time marked point process. We constructed a continuous-time marginal structural model to estimate the effect of cumulative exposure to Sodium-Glucose co-Transporters 2 Inhibitor (SGLT-2i) medications on time-to-recurrent urinary tract infection (UTI). We used a cohort of type II diabetes patients with chronic kidney disease and constructed a marked point process that characterized the recurrent flare episodes of primary care visits (i.e., point process) with marks for the multinominal dose (none, low, high) of SGLT-2i medications and recurrent episodes of UTI. We applied the stabilized and optimal treatment weights to estimate the hypothesized causal effect. Our results are concordant with earlier findings in which the recurrent episodes of UTI did not increase when patients were prescribed low dose or high dose of SGLT-2i medications.

摘要

当随时间变化的混杂因素本身受到既往治疗的影响时,在复发时间或纵向事件分析中会出现治疗 - 混杂因素反馈。由于在因果路径上基于这些因素进行条件设定,传统模型会产生关于因果效应的误导性统计推断。边际结构模型通常用于量化因果治疗效应,使用纵向权重进行估计,这些权重通过平衡治疗组间的协变量分布来模拟随机化过程。权重通常在离散时间间隔内构建,如果随访安排是定期的,这是合适的。然而,在初级保健中,就诊时间可能不规律且具有信息价值,并且治疗史包括持续时间和剂量。这可以通过连续时间标记点过程进行建模。我们构建了一个连续时间边际结构模型,以估计钠 - 葡萄糖协同转运蛋白2抑制剂(SGLT - 2i)药物的累积暴露对复发性尿路感染(UTI)时间的影响。我们使用了一组患有慢性肾病的II型糖尿病患者,并构建了一个标记点过程,该过程以初级保健就诊的复发性发作(即点过程)为特征,标记为SGLT - 2i药物的多项剂量(无、低、高)和UTI的复发性发作。我们应用稳定和最优治疗权重来估计假设的因果效应。我们的结果与早期研究结果一致,即当患者使用低剂量或高剂量SGLT - 2i药物时,UTI的复发次数并未增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d591/12086771/21f8d398f40a/SIM-44-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验