揭示阿尔茨海默病特定阶段的神经和分子进展:对早期筛查的意义。

Uncovering stage-specific neural and molecular progression in Alzheimer's disease: Implications for early screening.

作者信息

Lin Yun, Shi Xue, Mu Jia, Ren Huixia, Jiang Xiaosen, Zhu Lin, Cai Xingya, Lian Chongyuan, Pei Zian, Zhang Yongfang, Wang Cong, Hou Guixue, Lin Liang, Nie Chao, Song Cai, Gao Shuyang, Zhao Lijian, Wang Jian, Jiang Xin, Wang Jing, Guo Yi

机构信息

Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, Guangdong, China.

Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.

出版信息

Alzheimers Dement. 2025 May;21(5):e70182. doi: 10.1002/alz.70182.

Abstract

INTRODUCTION

Understanding molecular, neuroanatomical, and neurophysiological changes in cognitive decline is crucial for comprehending Alzheimer's disease (AD) progression and facilitating objective staging and early screening.

METHODS

We enrolled 277 participants and employed a multimodal approach, integrating genomics, metagenomics, metabolomics, magnetic resonance imaging (MRI), and electroencephalogram (EEG) to investigate the AD continuum, from subjective cognitive decline (SCD) through mild cognitive impairment (MCI) to advanced AD.

RESULTS

Key markers and mechanisms were identified for each stage: initial neurophysiological deficits in SCD with compensatory metabolomic responses, gut-brain axis dysregulation in MCI, and extensive metabolic disruption and multisystem breakdown in AD. Using random forest models, we identified specific feature combinations that achieved predictive areas under the curve (AUCs) of 0.78 for SCD, 0.84 for MCI, and 0.98 for AD, highlighting EEG as a particularly effective early screening tool.

DISCUSSION

This study elucidates AD's pathophysiological progression and highlights the potential of machine learning-assisted multimodal strategies for early detection and staging.

HIGHLIGHTS

Early electroencephalogram (EEG) changes and compensatory metabolomic responses define subjective cognitive decline (SCD) stage. In mild cognitive impairment (MCI), gut-brain axis dysfunction alters microbial diversity and functional pathways. In Alzheimer's disease (AD), systemic breakdown disruption enables near-perfect machine learning (ML) detection. Random forest models yield predictive areas under the curve (AUCs) of 0.78 (SCD), 0.84 (MCI), 0.98 (AD). EEG is a convenient, cost-efficient marker for early screening.

摘要

引言

了解认知衰退中的分子、神经解剖学和神经生理学变化对于理解阿尔茨海默病(AD)的进展以及促进客观分期和早期筛查至关重要。

方法

我们招募了277名参与者,并采用了多模态方法,整合基因组学、宏基因组学、代谢组学、磁共振成像(MRI)和脑电图(EEG)来研究AD连续体,从主观认知衰退(SCD)到轻度认知障碍(MCI)再到晚期AD。

结果

确定了每个阶段的关键标志物和机制:SCD阶段最初的神经生理缺陷伴有代偿性代谢组学反应,MCI阶段肠脑轴失调,AD阶段广泛的代谢紊乱和多系统功能障碍。使用随机森林模型,我们确定了特定的特征组合,其在SCD、MCI和AD中的曲线下预测面积(AUC)分别为0.78、0.84和0.98,突出了EEG作为一种特别有效的早期筛查工具。

讨论

本研究阐明了AD的病理生理进展,并突出了机器学习辅助多模态策略在早期检测和分期方面的潜力。

亮点

早期脑电图(EEG)变化和代偿性代谢组学反应定义了主观认知衰退(SCD)阶段。在轻度认知障碍(MCI)中,肠脑轴功能障碍改变了微生物多样性和功能途径。在阿尔茨海默病(AD)中,全身功能障碍使得机器学习(ML)检测近乎完美。随机森林模型在SCD、MCI和AD中的曲线下预测面积(AUC)分别为0.78、0.84和0.98。EEG是一种方便、经济高效的早期筛查标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3109/12086656/adf3e2e8b794/ALZ-21-e70182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索