Soroushianfar Mahdi, Asgari Goli, Afzali Fatemeh, Falahat Atiyeh, Soroush Mohammad, Baghahi Mansoor, Haratizadeh Mohammad Javad, Khalili-Tanha Ghazaleh, Nazari Elham
Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran.
Curr Nutr Rep. 2025 May 19;14(1):67. doi: 10.1007/s13668-025-00657-w.
PURPOSE OF REVIEW: Food safety is a fundamental challenge in public health and sustainable development, facing threats from microbial, chemical, and physical contamination. Innovative technologies improve our capacity to detect contamination early and prevent disease outbreaks, while also optimizing food production and distribution processes. RECENT FINDINGS: This article discusses the role of new bioinformatics and machine learning technologies in promoting food safety and contamination control, along with various related articles in this field. By analyzing genetic and proteomic data, bioinformatics helps to quickly and accurately identify pathogens and sources of contamination. Machine learning, as a powerful tool for massive data processing, also can discover hidden patterns in the food production and distribution chain, which helps to improve risk prediction and control processes. By reviewing previous research and providing new solutions, this article emphasizes the role of these technologies in identifying, preventing, and improving decisions related to food safety. This study comprehensively shows how the integration of bioinformatics and machine learning can help improve food quality and safety and prevent foodborne disease outbreaks.
综述目的:食品安全是公共卫生和可持续发展中的一项基本挑战,面临着微生物、化学和物理污染的威胁。创新技术提高了我们早期检测污染和预防疾病爆发的能力,同时还优化了食品生产和分销流程。 最新发现:本文讨论了新的生物信息学和机器学习技术在促进食品安全和污染控制方面的作用,以及该领域的各种相关文章。通过分析遗传和蛋白质组学数据,生物信息学有助于快速准确地识别病原体和污染源。机器学习作为海量数据处理的强大工具,还可以发现食品生产和分销链中的隐藏模式,有助于改进风险预测和控制流程。通过回顾以往的研究并提供新的解决方案,本文强调了这些技术在识别、预防和改进与食品安全相关决策方面的作用。这项研究全面展示了生物信息学和机器学习的整合如何有助于提高食品质量和安全,并预防食源性疾病的爆发。
Curr Nutr Rep. 2025-5-19
Foodborne Pathog Dis. 2012-1-4
Food Microbiol. 2018-10
Appl Environ Microbiol. 2018-8-17
Int J Food Microbiol. 2006-12-1
Adv Food Nutr Res. 2025
Adv Food Nutr Res. 2024
Annu Rev Food Sci Technol. 2021-3-25
Parasitol Int. 2024-10
Int J Microbiol. 2024-5-17
Sci Total Environ. 2024-3-10
Food Sci Nutr. 2023-10-7
Heliyon. 2023-9-4