文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物信息学和机器学习工具在食品安全中的应用。

Application of Bioinformatics and Machine Learning Tools in Food Safety.

作者信息

Soroushianfar Mahdi, Asgari Goli, Afzali Fatemeh, Falahat Atiyeh, Soroush Mohammad, Baghahi Mansoor, Haratizadeh Mohammad Javad, Khalili-Tanha Ghazaleh, Nazari Elham

机构信息

Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran.

出版信息

Curr Nutr Rep. 2025 May 19;14(1):67. doi: 10.1007/s13668-025-00657-w.


DOI:10.1007/s13668-025-00657-w
PMID:40388006
Abstract

PURPOSE OF REVIEW: Food safety is a fundamental challenge in public health and sustainable development, facing threats from microbial, chemical, and physical contamination. Innovative technologies improve our capacity to detect contamination early and prevent disease outbreaks, while also optimizing food production and distribution processes. RECENT FINDINGS: This article discusses the role of new bioinformatics and machine learning technologies in promoting food safety and contamination control, along with various related articles in this field. By analyzing genetic and proteomic data, bioinformatics helps to quickly and accurately identify pathogens and sources of contamination. Machine learning, as a powerful tool for massive data processing, also can discover hidden patterns in the food production and distribution chain, which helps to improve risk prediction and control processes. By reviewing previous research and providing new solutions, this article emphasizes the role of these technologies in identifying, preventing, and improving decisions related to food safety. This study comprehensively shows how the integration of bioinformatics and machine learning can help improve food quality and safety and prevent foodborne disease outbreaks.

摘要

综述目的:食品安全是公共卫生和可持续发展中的一项基本挑战,面临着微生物、化学和物理污染的威胁。创新技术提高了我们早期检测污染和预防疾病爆发的能力,同时还优化了食品生产和分销流程。 最新发现:本文讨论了新的生物信息学和机器学习技术在促进食品安全和污染控制方面的作用,以及该领域的各种相关文章。通过分析遗传和蛋白质组学数据,生物信息学有助于快速准确地识别病原体和污染源。机器学习作为海量数据处理的强大工具,还可以发现食品生产和分销链中的隐藏模式,有助于改进风险预测和控制流程。通过回顾以往的研究并提供新的解决方案,本文强调了这些技术在识别、预防和改进与食品安全相关决策方面的作用。这项研究全面展示了生物信息学和机器学习的整合如何有助于提高食品质量和安全,并预防食源性疾病的爆发。

相似文献

[1]
Application of Bioinformatics and Machine Learning Tools in Food Safety.

Curr Nutr Rep. 2025-5-19

[2]
The potential capability of social media as a component of food safety and food terrorism surveillance systems.

Foodborne Pathog Dis. 2012-1-4

[3]
Preface: New Tools to detect and Prevent Foodborne Outbreaks from Farm to Fork.

Food Microbiol. 2018-10

[4]
Postharvest Supply Chain with Microbial Travelers: a Farm-to-Retail Microbial Simulation and Visualization Framework.

Appl Environ Microbiol. 2018-8-17

[5]
Optical sensing for real-time detection of food-borne pathogens in fresh produce using machine learning.

Sci Prog. 2024

[6]
Information systems in food safety management.

Int J Food Microbiol. 2006-12-1

[7]
Advanced data analytics and "omics" techniques to control enteric foodborne pathogens.

Adv Food Nutr Res. 2025

[8]
Low-water activity foods: increased concern as vehicles of foodborne pathogens.

J Food Prot. 2013-1

[9]
Frontiers of machine learning in smart food safety.

Adv Food Nutr Res. 2024

[10]
Emerging Applications of Machine Learning in Food Safety.

Annu Rev Food Sci Technol. 2021-3-25

引用本文的文献

[1]
Food Safety in the European Union: A Comparative Assessment Based on RASFF Notifications, Pesticide Residues, and Food Waste Indicators.

Foods. 2025-7-17

本文引用的文献

[1]
Gastrointestinal parasites of cats in the Middle East (2000-2023): A literature review.

Parasitol Int. 2024-10

[2]
Advancements in Predictive Microbiology: Integrating New Technologies for Efficient Food Safety Models.

Int J Microbiol. 2024-5-17

[3]
Pesticides: An alarming detrimental to health and environment.

Sci Total Environ. 2024-3-10

[4]
Brucellosis: epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review.

Ann Med. 2023

[5]
The Application of Artificial Intelligence and Big Data in the Food Industry.

Foods. 2023-12-18

[6]
Constructing an Interactive and Integrated Analysis and Identification Platform for Pathogenic Microorganisms to Support Surveillance Capacity.

Genes (Basel). 2023-11-29

[7]
Mitigating physical hazards in food processing: Risk assessment and preventive strategies.

Food Sci Nutr. 2023-10-7

[8]
Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review.

Chemosphere. 2023-12

[9]
A Review of Food Contaminants and Their Pathways Within Food Processing Facilities Using Open Food Processing Equipment.

J Food Prot. 2023-12

[10]
Detection and prevention of foreign material in food: A review.

Heliyon. 2023-9-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索