Mamachan Merlin, Maiti Swapan Kumar, Banu Shajahan Amitha, Sharun Khan, Mishra Mamta, Kalaiselvan Elangovan, Emmanuel Rony S, Manjusha K M, Singh Karam Pal, Balasubramanian Rathina Vel, Bodhak Subhadip, Balla Vamsi Krishna
Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
Graduate Institute of Medicine, Yuan Ze University, Taoyuan, 32003, Taiwan.
Cell Tissue Bank. 2025 May 19;26(3):26. doi: 10.1007/s10561-025-10176-1.
Despite significant progress in cartilage regeneration therapeutics, several challenges remain in achieving optimal results under in vivo conditions. The present research evaluated the chondrogenic potential of poly(glycerol sebacate) copolymer nanofibrous scaffold (PGS NF) loaded with growth differentiation factor-5 incorporated sugar glass nanoparticles (SGnP-GDF5), in combination with allogenic bone marrow-derived mesenchymal stem cells (BM-MSC) in a rabbit model. A full-thickness chondral defect of 4 mm diameter was created in the trochlear facet of the left femur of rabbits using a Brad point drill bit. PGS NF was used in group B, BM-MSC laden PGS NF in group C, SGnP-GDF5 loaded PGS NF in group D, and BM-MSC laden SGnP-GDF5 loaded PGS NF in group E. Five animals from each group were sacrificed on days 60 and 90 post-treatment. The samples were assessed based on gross morphology, histopathology, scanning electron microscopy (SEM), and micro-computed tomography (micro-CT) analysis to evaluate regeneration. The SGnP-GDF5 PGS NF group and the BM-MSC laden SGnP-GDF5 PGS NF group exhibited superior cartilage regeneration, closely resembling hyaline cartilage. Histopathological evaluation revealed a columnar pattern of chondrocytes, along with an optimal concentration of proteoglycans and collagen in the extracellular matrix of the newly formed cartilage, indicating robust regeneration in both groups. Furthermore, the SEM and micro-CT analysis findings highlighted the exceptional quality of the repaired tissue in these groups. The release of GDF5 from SGnP and the expedient microenvironment provided by the NF scaffold augmented chondrogenic differentiation, resulting in superior cartilage tissue regeneration.
尽管软骨再生治疗取得了显著进展,但在体内条件下实现最佳效果仍面临一些挑战。本研究评估了负载生长分化因子-5的聚癸二酸甘油酯共聚物纳米纤维支架(PGS NF)结合糖玻璃纳米颗粒(SGnP-GDF5)与同种异体骨髓间充质干细胞(BM-MSC)在兔模型中的软骨生成潜力。使用布拉德尖钻头在兔左股骨滑车关节面制造直径4毫米的全层软骨缺损。B组使用PGS NF,C组使用负载BM-MSC的PGS NF,D组使用负载SGnP-GDF5的PGS NF,E组使用负载BM-MSC的SGnP-GDF5的PGS NF。每组五只动物在治疗后第60天和第90天处死。基于大体形态、组织病理学、扫描电子显微镜(SEM)和微型计算机断层扫描(micro-CT)分析对样本进行评估,以评估再生情况。SGnP-GDF5 PGS NF组和负载BM-MSC的SGnP-GDF5 PGS NF组表现出优异的软骨再生,与透明软骨非常相似。组织病理学评估显示软骨细胞呈柱状排列,新形成的软骨细胞外基质中蛋白聚糖和胶原蛋白浓度最佳,表明两组均有强劲的再生。此外,SEM和micro-CT分析结果突出了这些组中修复组织的卓越质量。SGnP释放的GDF5和NF支架提供的适宜微环境增强了软骨生成分化,从而实现了优异的软骨组织再生。