Suppr超能文献

用于软骨再生的明胶改性3D打印聚癸二酸甘油酯弹性分级多孔支架

Gelatin-modified 3D printed PGS elastic hierarchical porous scaffold for cartilage regeneration.

作者信息

Wang Sinan, Chen Hongying, Huang Jinyi, Shen Sisi, Tang Zhengya, Tan Xiaoyan, Lei Dong, Zhou Guangdong

机构信息

Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.

Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.

出版信息

APL Bioeng. 2023 Aug 4;7(3):036105. doi: 10.1063/5.0152151. eCollection 2023 Sep.

Abstract

Regenerative cartilage replacements are increasingly required in clinical settings for various defect repairs, including bronchial cartilage deficiency, articular cartilage injury, and microtia reconstruction. Poly (glycerol sebacate) (PGS) is a widely used bioelastomer that has been developed for various regenerative medicine applications because of its excellent elasticity, biodegradability, and biocompatibility. However, because of inadequate active groups, strong hydrophobicity, and limited ink extrusion accuracy, 3D printed PGS scaffolds may cause insufficient bioactivity, inefficient cell inoculation, and inconsistent cellular composition, which seriously hinders its further cartilage regenerative application. Here, we combined 3D printed PGS frameworks with an encapsulated gelatin hydrogel to fabricate a PGS@Gel composite scaffold. PGS@Gel scaffolds have a controllable porous microstructure, with suitable pore sizes and enhanced hydrophilia, which could significantly promote the cells' penetration and adhesion for efficient chondrocyte inoculation. Furthermore, the outstanding elasticity and fatigue durability of the PGS framework enabled the regenerated cartilage built by the PGS@Gel scaffolds to resist the dynamic environment and maintain its original morphology. Importantly, PGS@Gel scaffolds increased the rate of cartilage regeneration concurrent with scaffold degradation. The scaffold was gradually degraded and integrated to form uniform, dense, and mature regenerated cartilage tissue with little scaffold residue.

摘要

在临床环境中,对于包括支气管软骨缺损、关节软骨损伤和小耳畸形重建在内的各种缺损修复,越来越需要再生软骨替代物。聚癸二酸甘油酯(PGS)是一种广泛使用的生物弹性体,由于其优异的弹性、生物降解性和生物相容性,已被开发用于各种再生医学应用。然而,由于活性基团不足、疏水性强和墨水挤出精度有限,3D打印的PGS支架可能会导致生物活性不足、细胞接种效率低下和细胞组成不一致,这严重阻碍了其在软骨再生方面的进一步应用。在此,我们将3D打印的PGS框架与封装的明胶水凝胶相结合,制备了PGS@Gel复合支架。PGS@Gel支架具有可控的多孔微观结构,孔径合适且亲水性增强,这可以显著促进细胞的渗透和粘附,以实现高效的软骨细胞接种。此外,PGS框架出色的弹性和疲劳耐久性使由PGS@Gel支架构建的再生软骨能够抵抗动态环境并保持其原始形态。重要的是,PGS@Gel支架在支架降解的同时提高了软骨再生的速率。支架逐渐降解并整合,形成均匀、致密和成熟的再生软骨组织,几乎没有支架残留。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/10404141/49c683f75995/ABPID9-000007-036105_1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验