Li Qun, Zheng Junyan, Yang Yansong
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
Microsyst Nanoeng. 2025 May 19;11(1):95. doi: 10.1038/s41378-025-00947-x.
Next-generation communication systems require the mass deployment of ultra-small, high-performance filters that integrate multi-physical domains. However, achieving an optimal balance between miniaturization, low insertion loss, high selectivity, and low cost of millimeter-wave filters remains a challenge for existing technologies. Herein, we propose and demonstrate ultra-small millimeter-wave filters based on the multifunctional lithium niobate (LN) with outstanding nonlinear optical, electro-optic, piezoelectric, ferroelectric, and thermoelectric characteristics. As a high-K material with low dielectric loss and straightforward fabrication, LN provides an ideal platform for integrating photonic, acoustic, and electromagnetic functionalities. Notably, while LN is already proven for acoustic and optical signal processing, its potential for electromagnetic signal processing remains largely unexplored. In this work, we introduce second-order and fourth-order LN-based millimeter-wave bandpass filters (BPFs) tailored for narrowband and wideband millimeter-wave applications, respectively. Through careful optimization of the LN thickness, we elevate the cutoff frequencies of high-order modes, enhancing frequency selectivity while maintaining compactness. The LN-based BPFs exhibit record-breaking performance metrics, including minimal insertion loss, high selectivity, and compatibility with microfabrication processes. The LN-based BPFs fulfill the critical demands of millimeter-wave wireless communications, sensing, imaging, and emerging quantum information systems, paving the way for scalable, multi-physical integrated circuits.
下一代通信系统需要大规模部署集成多物理域的超小型高性能滤波器。然而,在毫米波滤波器的小型化、低插入损耗、高选择性和低成本之间实现最佳平衡,对现有技术来说仍然是一项挑战。在此,我们提出并展示了基于多功能铌酸锂(LN)的超小型毫米波滤波器,该滤波器具有出色的非线性光学、电光、压电、铁电和热电特性。作为一种具有低介电损耗且易于制造的高K材料,LN为集成光子、声学和电磁功能提供了一个理想平台。值得注意的是,虽然LN已被证明可用于声学和光学信号处理,但其在电磁信号处理方面的潜力在很大程度上仍未得到探索。在这项工作中,我们分别介绍了针对窄带和宽带毫米波应用定制的基于二阶和四阶LN的毫米波带通滤波器(BPF)。通过仔细优化LN厚度,我们提高了高阶模式的截止频率,在保持紧凑性的同时增强了频率选择性。基于LN的BPF展现出破纪录的性能指标,包括最小插入损耗、高选择性以及与微制造工艺的兼容性。基于LN的BPF满足了毫米波无线通信、传感、成像和新兴量子信息系统的关键需求,为可扩展的多物理集成电路铺平了道路。