Center for Hybrid Nanostructures (CHyN), University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany.
I. Institute for Theoretical Physics, University of Hamburg, Jungiusstrasse 9-11, 20355 Hamburg, Germany.
Phys Rev Lett. 2019 Feb 1;122(4):046403. doi: 10.1103/PhysRevLett.122.046403.
In 2005, Kane and Mele [Phys. Rev. Lett. 95, 226801 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.226801] predicted that at sufficiently low energy, graphene exhibits a topological state of matter with an energy gap generated by the atomic spin-orbit interaction. However, this intrinsic gap has not been measured to this date. In this Letter, we exploit the chirality of the low-energy states to resolve this gap. We probe the spin states experimentally by employing low temperature microwave excitation in a resistively detected electron-spin resonance on graphene. The structure of the topological bands is reflected in our transport experiments, where our numerical models allow us to identify the resonance signatures. We determine the intrinsic spin-orbit bulk gap to be exactly 42.2 μeV. Electron-spin resonance experiments can reveal the competition between the intrinsic spin-orbit coupling and classical Zeeman energy that arises at low magnetic fields and demonstrate that graphene remains to be a material with surprising properties.
2005 年,凯恩和梅勒 [Phys. Rev. Lett. 95, 226801 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.226801] 预测,在足够低的能量下,石墨烯表现出一种拓扑物质状态,其能隙由原子自旋轨道相互作用产生。然而,到目前为止,这个固有间隙尚未被测量到。在这篇快报中,我们利用低能态的手性来解决这个间隙问题。我们通过在石墨烯的电阻检测电子自旋共振中利用低温微波激发来实验探测自旋态。拓扑能带的结构反映在我们的输运实验中,我们的数值模型允许我们识别共振特征。我们确定固有自旋轨道体隙恰好为 42.2 μeV。电子自旋共振实验可以揭示在低磁场下出现的固有自旋轨道耦合和经典塞曼能量之间的竞争,并证明石墨烯仍然是一种具有惊人性质的材料。