Murphy Ryan A, McCone Kennedy C, Claassen Robert, Holmgren Ellen, Johnston-Halperin Ezekiel, Long Jeffrey R
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2025 Jun 4;147(22):19157-19165. doi: 10.1021/jacs.5c04610. Epub 2025 May 20.
Molecule-based magnetic materials have been identified as promising candidates for application in magnonic technologies, owing not only to their solution processability but also because they can exhibit narrow ferromagnetic resonance (FMR) linewidths and low Gilbert damping coefficients─crucial prerequisites for the transmission of coherent magnons over macroscopic distances. In particular, V(TCNE), a compound with a three-dimensional network structure composed of vanadium(II) centers linked by tetracyanoethylene (TCNE) radical anions, displays magnonic properties comparable to yttrium iron garnet, the quintessential magnonic material in the field. However, existing solution and chemical vapor deposition methods for synthesizing V(TCNE) require the use of highly reactive zero-valent molecular vanadium precursors, stymying research on this important material. Herein, we report a facile electrochemical method for the deposition of thin films of V(TCNE) using readily obtainable and stable divalent vanadium precursors and TCNE anions generated by electrochemical reduction. Magnetization measurements reveal that the films exhibit ferrimagnetic ordering above room temperature, consistent with V(TCNE) films synthesized via other methods. Moreover, the electrodeposited films exhibit narrow FMR linewidths as low as 17.5 G and a low Gilbert damping coefficient of 1.1 × 10, values that are on par with some currently integrated metallic magnonic materials. More generally, these results demonstrate that electrodeposition can provide a straightforward means of generating high-performance magnonic materials using readily available molecular precursors.
基于分子的磁性材料已被视为有望应用于磁子技术的候选材料,这不仅是因为它们具有溶液可加工性,还因为它们能展现出窄的铁磁共振(FMR)线宽和低的吉尔伯特阻尼系数——这是在宏观距离上传输相干磁子的关键先决条件。特别是V(TCNE),一种具有三维网络结构的化合物,由通过四氰基乙烯(TCNE)自由基阴离子连接的钒(II)中心组成,其磁子特性与该领域典型的磁子材料钇铁石榴石相当。然而,现有的用于合成V(TCNE)的溶液法和化学气相沉积法需要使用高反应性的零价分子钒前驱体,这阻碍了对这种重要材料的研究。在此,我们报告了一种简便的电化学方法,用于使用易于获得且稳定的二价钒前驱体和通过电化学还原产生的TCNE阴离子来沉积V(TCNE)薄膜。磁化测量表明,这些薄膜在室温以上表现出亚铁磁有序,这与通过其他方法合成的V(TCNE)薄膜一致。此外,电沉积薄膜展现出低至17.5 G的窄FMR线宽和1.1×10的低吉尔伯特阻尼系数,这些值与一些目前集成的金属磁子材料相当。更一般地说,这些结果表明,电沉积可以提供一种直接的方法,利用易于获得的分子前驱体来制备高性能磁子材料。