Suppr超能文献

髓鞘少突胶质细胞糖蛋白抗体血清阳性与血清阴性视神经炎分化过程中静态和动态大规模脑功能网络连接的破坏

Disrupted static and dynamic Large-scale brain functional network connectivity in the differentiation of myelin oligodendrocyte glycoprotein Antibody-Seropositive from seronegative optic neuritis.

作者信息

Wang Wentao, Liu Xilan, Sha Yan, Wang Ximing, Lu Ping

机构信息

Zhongshan Hospital, Shanghai, China.

Fudan University Shanghai Cancer Center, Shanghai, China.

出版信息

Neuroradiology. 2025 May 20. doi: 10.1007/s00234-025-03643-9.

Abstract

PURPOSE

The ability to distinguish myelin oligodendrocyte glycoprotein antibody-seropositive optic neuritis (MOG-ON) from seronegative-ON is critical in clinical practice. We investigate potential neural mechanisms and differentiation biomarkers via large-scale functional network connectivity (FNC) using resting-state functional magnetic resonance imaging (RS-fMRI).

METHODS

RS-fMRI-based independent component analysis (ICA) was performed in 79 subjects, including 23 with MOG-ON, 30 with seronegative-ON and 26 healthy controls (HCs). The resting-state networks (RSNs) extracted from the ICA were used to investigate static FNC (sFNC) changes within and between groups. In addition, 5 dynamic FNC (dFNC) states were identified using k-means cluster analysis, and several state-related properties were calculated. Receiver operating characteristic (ROC) curve analysis was also performed to determine its value in differential diagnosis.

RESULTS

In the sFNC analysis, the patient groups showed decreased intranetwork functional connectivity (FC) within several RSNs compared to the HC group. The MOG-ON group presented significantly altered intranetwork FC in the medial visual network (mVN) and posterior default mode network (pDMN) compared with the seronegative-ON group. Compared with the HCs, the patient groups also presented abnormal internetwork FC between RSNs. In the dFNC analysis, the patient groups presented altered fractional occupancy and dwell times in states 1 and 5 compared with HCs, and the changes in state-related metrics were also distinct between the MOG-ON and seronegative-ON groups. In terms of ROC curve analysis, optimal diagnostic performance was achieved by combining static and dynamic approaches.

CONCLUSIONS

Abnormal large-scale static and dynamic brain functional networks may help to better understand the neural mechanisms of MOG-ON and seronegative-ON and their differentiation.

摘要

目的

在临床实践中,区分髓鞘少突胶质细胞糖蛋白抗体血清阳性视神经炎(MOG-ON)和血清阴性视神经炎至关重要。我们通过使用静息态功能磁共振成像(RS-fMRI)的大规模功能网络连接性(FNC)来研究潜在的神经机制和鉴别生物标志物。

方法

对79名受试者进行了基于RS-fMRI的独立成分分析(ICA),其中包括23名MOG-ON患者、30名血清阴性视神经炎患者和26名健康对照(HCs)。从ICA中提取的静息态网络(RSNs)用于研究组内和组间的静态FNC(sFNC)变化。此外,使用k均值聚类分析识别了5种动态FNC(dFNC)状态,并计算了几种与状态相关的属性。还进行了受试者工作特征(ROC)曲线分析,以确定其在鉴别诊断中的价值。

结果

在sFNC分析中,与HC组相比,患者组在几个RSN内的网络内功能连接性(FC)降低。与血清阴性视神经炎组相比,MOG-ON组在内侧视觉网络(mVN)和后默认模式网络(pDMN)中的网络内FC有显著改变。与HCs相比,患者组在RSN之间的网络间FC也异常。在dFNC分析中,与HCs相比,患者组在状态1和状态5中的分数占用率和停留时间发生了改变,并且MOG-ON组和血清阴性视神经炎组之间与状态相关指标的变化也不同。在ROC曲线分析方面,通过结合静态和动态方法实现了最佳诊断性能。

结论

异常的大规模静态和动态脑功能网络可能有助于更好地理解MOG-ON和血清阴性视神经炎的神经机制及其鉴别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验