Chinta Sribala Vidyadhari, Wang Zichong, Palikhe Avash, Zhang Xingyu, Kashif Ayesha, Smith Monique Antoinette, Liu Jun, Zhang Wenbin
Florida International University, Miami, Florida, United States of America.
University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLOS Digit Health. 2025 May 20;4(5):e0000864. doi: 10.1371/journal.pdig.0000864. eCollection 2025 May.
Artificial intelligence (AI) is rapidly advancing in healthcare, enhancing the efficiency and effectiveness of services across various specialties, including cardiology, ophthalmology, dermatology, emergency medicine, etc. AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions by leveraging technologies such as machine learning, neural networks, and natural language processing. However, these advancements also introduce substantial ethical and fairness challenges, particularly related to biases in data and algorithms. These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups. This review paper examines the integration of AI in healthcare, highlighting critical challenges related to bias and exploring strategies for mitigation. We emphasize the necessity of diverse datasets, fairness-aware algorithms, and regulatory frameworks to ensure equitable healthcare delivery. The paper concludes with recommendations for future research, advocating for interdisciplinary approaches, transparency in AI decision-making, and the development of innovative and inclusive AI applications.
人工智能(AI)在医疗保健领域正迅速发展,提高了包括心脏病学、眼科、皮肤科、急诊医学等各个专业服务的效率和效果。人工智能应用通过利用机器学习、神经网络和自然语言处理等技术,显著提高了诊断准确性、治疗个性化和患者预后预测能力。然而,这些进展也带来了重大的伦理和公平性挑战,特别是与数据和算法中的偏差有关。这些偏差可能导致医疗服务的差异,影响不同人口群体的诊断准确性和治疗结果。这篇综述文章探讨了人工智能在医疗保健中的整合,强调了与偏差相关的关键挑战,并探索了缓解策略。我们强调需要多样化的数据集、注重公平性的算法和监管框架,以确保公平的医疗服务。文章最后提出了未来研究的建议,倡导跨学科方法、人工智能决策的透明度以及创新和包容性人工智能应用的开发。
PLOS Digit Health. 2025-5-20
Disabil Rehabil Assist Technol. 2025-3-13
J Med Internet Res. 2025-7-29
J Med Internet Res. 2025-4-4
J Robot Surg. 2025-1-7
Artif Intell Med. 2025-5-24
J Med Internet Res. 2025-6-23
PLOS Digit Health. 2025-8-21
Womens Health Nurs. 2025-6
PLOS Digit Health. 2024-11-7
JAMA. 2024-1-16
Jpn J Radiol. 2024-1
NPJ Digit Med. 2023-6-14
West J Emerg Med. 2022-6-29
Iran J Public Health. 2021-11
J Health Psychol. 2022-7