Suppr超能文献

基于人工智能的医学应用模型中的偏差:挑战与缓解策略。

Bias in AI-based models for medical applications: challenges and mitigation strategies.

作者信息

Mittermaier Mirja, Raza Marium M, Kvedar Joseph C

机构信息

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany.

Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.

出版信息

NPJ Digit Med. 2023 Jun 14;6(1):113. doi: 10.1038/s41746-023-00858-z.

Abstract

Artificial intelligence systems are increasingly being applied to healthcare. In surgery, AI applications hold promise as tools to predict surgical outcomes, assess technical skills, or guide surgeons intraoperatively via computer vision. On the other hand, AI systems can also suffer from bias, compounding existing inequities in socioeconomic status, race, ethnicity, religion, gender, disability, or sexual orientation. Bias particularly impacts disadvantaged populations, which can be subject to algorithmic predictions that are less accurate or underestimate the need for care. Thus, strategies for detecting and mitigating bias are pivotal for creating AI technology that is generalizable and fair. Here, we discuss a recent study that developed a new strategy to mitigate bias in surgical AI systems.

摘要

人工智能系统正越来越多地应用于医疗保健领域。在外科手术中,人工智能应用有望成为预测手术结果、评估技术技能或通过计算机视觉在术中指导外科医生的工具。另一方面,人工智能系统也可能存在偏差,加剧社会经济地位、种族、民族、宗教、性别、残疾或性取向方面现有的不平等。偏差尤其会影响弱势群体,他们可能会受到不太准确或低估护理需求的算法预测。因此,检测和减轻偏差的策略对于创建可推广且公平的人工智能技术至关重要。在此,我们讨论一项最近的研究,该研究开发了一种减轻外科人工智能系统偏差的新策略。

相似文献

1
Bias in AI-based models for medical applications: challenges and mitigation strategies.
NPJ Digit Med. 2023 Jun 14;6(1):113. doi: 10.1038/s41746-023-00858-z.
2
Evaluation and Mitigation of Racial Bias in Clinical Machine Learning Models: Scoping Review.
JMIR Med Inform. 2022 May 31;10(5):e36388. doi: 10.2196/36388.
3
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes.
J Am Med Inform Assoc. 2022 Jul 12;29(8):1334-1341. doi: 10.1093/jamia/ocac070.
4
Bias at warp speed: how AI may contribute to the disparities gap in the time of COVID-19.
J Am Med Inform Assoc. 2021 Jan 15;28(1):190-192. doi: 10.1093/jamia/ocaa210.
5
Artificial Intelligence, Machine Learning, and Cardiovascular Disease.
Clin Med Insights Cardiol. 2020 Sep 9;14:1179546820927404. doi: 10.1177/1179546820927404. eCollection 2020.
6
Ethical and Legal Challenges of Artificial Intelligence in Nuclear Medicine.
Semin Nucl Med. 2021 Mar;51(2):120-125. doi: 10.1053/j.semnuclmed.2020.08.001. Epub 2020 Sep 11.
8
Implementing Ethics in Healthcare AI-Based Applications: A Scoping Review.
Sci Eng Ethics. 2021 Sep 3;27(5):61. doi: 10.1007/s11948-021-00336-3.
10
Real-world application, challenges and implication of artificial intelligence in healthcare: an essay.
Pan Afr Med J. 2022 Sep 2;43:3. doi: 10.11604/pamj.2022.43.3.33384. eCollection 2022.

引用本文的文献

3
Deep Learning Applications in Clinical Cancer Detection: A Review of Implementation Challenges and Solutions.
Mayo Clin Proc Digit Health. 2025 Jul 18;3(3):100253. doi: 10.1016/j.mcpdig.2025.100253. eCollection 2025 Sep.
4
Artificial intelligence across the cancer care continuum.
Cancer. 2025 Aug 15;131(16):e70050. doi: 10.1002/cncr.70050.
5
Harnessing artificial intelligence for enhanced public health surveillance: a narrative review.
Front Public Health. 2025 Jul 30;13:1601151. doi: 10.3389/fpubh.2025.1601151. eCollection 2025.
7
Harnessing artificial intelligence for brain disease: advances in diagnosis, drug discovery, and closed-loop therapeutics.
Front Neurol. 2025 Jul 28;16:1615523. doi: 10.3389/fneur.2025.1615523. eCollection 2025.
9
Effective Non-IID Degree Estimation for Robust Federated Learning in Healthcare Datasets.
J Healthc Inform Res. 2025 Mar 22;9(3):437-464. doi: 10.1007/s41666-025-00195-8. eCollection 2025 Sep.

本文引用的文献

1
A vision transformer for decoding surgeon activity from surgical videos.
Nat Biomed Eng. 2023 Jun;7(6):780-796. doi: 10.1038/s41551-023-01010-8. Epub 2023 Mar 30.
2
Human visual explanations mitigate bias in AI-based assessment of surgeon skills.
NPJ Digit Med. 2023 Mar 30;6(1):54. doi: 10.1038/s41746-023-00766-2.
3
A multi-institutional study using artificial intelligence to provide reliable and fair feedback to surgeons.
Commun Med (Lond). 2023 Mar 30;3(1):42. doi: 10.1038/s43856-023-00263-3.
4
An adversarial training framework for mitigating algorithmic biases in clinical machine learning.
NPJ Digit Med. 2023 Mar 29;6(1):55. doi: 10.1038/s41746-023-00805-y.
5
Surgical gestures as a method to quantify surgical performance and predict patient outcomes.
NPJ Digit Med. 2022 Dec 22;5(1):187. doi: 10.1038/s41746-022-00738-y.
6
Tackling bias in AI health datasets through the STANDING Together initiative.
Nat Med. 2022 Nov;28(11):2232-2233. doi: 10.1038/s41591-022-01987-w.
7
Algorithmic fairness in computational medicine.
EBioMedicine. 2022 Oct;84:104250. doi: 10.1016/j.ebiom.2022.104250. Epub 2022 Sep 6.
8
Putting explainable AI in context: institutional explanations for medical AI.
Ethics Inf Technol. 2022;24(2):23. doi: 10.1007/s10676-022-09649-8. Epub 2022 May 6.
9
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations.
Nat Med. 2021 Dec;27(12):2176-2182. doi: 10.1038/s41591-021-01595-0. Epub 2021 Dec 10.
10
A systematic review on artificial intelligence in robot-assisted surgery.
Int J Surg. 2021 Nov;95:106151. doi: 10.1016/j.ijsu.2021.106151. Epub 2021 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验