Steidl Timo, Kuna Pierre, Hesselmeier-Hüttmann Erik, Liu Di, Stöhr Rainer, Knolle Wolfgang, Ghezellou Misagh, Ul-Hassan Jawad, Schober Maximilian, Bockstedte Michel, Bian Guodong, Gali Adam, Vorobyov Vadim, Wrachtrup Jörg
3rd Institute of Physics, IQST, and Research Center SCoPE, University of Stuttgart, Stuttgart, Germany.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Nat Commun. 2025 May 20;16(1):4669. doi: 10.1038/s41467-025-59647-9.
Nanoelectrical and photonic integration of quantum optical components is crucial for scalable solid-state quantum technologies. Silicon carbide stands out as a material with mature quantum defects and a wide variety of applications in semiconductor industry. Here, we study the behaviour of single silicon vacancy (V2) colour centres in a metal-semiconductor (Au/Ti/4H-SiC) epitaxial wafer device, operating in a Schottky diode configuration. We explore the depletion of free carriers in the vicinity of the defect, as well as electrical tuning of the defect optical transition lines. By detecting single charge traps, we investigate their impact on V2 optical line width. Additionally, we investigate the charge-photon-dynamics of the V2 centre and find its dominating photon-ionisation processes characteristic rate and wavelength dependence. Finally, we probe the spin coherence properties of the V2 system in the junction and demonstrate several key protocols for quantum network applications. Our work shows the first demonstration of low temperature integration of a Schottky device with optical microstructures for quantum applications and paves the way towards fundamentally scalable and reproducible optical spin defect centres in solids.
量子光学元件的纳米电气和光子集成对于可扩展的固态量子技术至关重要。碳化硅作为一种具有成熟量子缺陷且在半导体行业有广泛应用的材料脱颖而出。在此,我们研究了金属 - 半导体(金/钛/4H - 碳化硅)外延晶圆器件中单个硅空位(V2)色心的行为,该器件以肖特基二极管配置运行。我们探索了缺陷附近自由载流子的耗尽情况,以及缺陷光学跃迁线的电学调谐。通过检测单个电荷陷阱,我们研究了它们对V2光学线宽的影响。此外,我们研究了V2中心的电荷 - 光子动力学,并发现了其主导的光子电离过程的特征速率和波长依赖性。最后,我们探测了结中V2系统的自旋相干特性,并展示了用于量子网络应用的几个关键协议。我们的工作首次展示了用于量子应用的肖特基器件与光学微结构的低温集成,并为在固体中实现从根本上可扩展且可重复的光学自旋缺陷中心铺平了道路。