Niethammer Matthias, Widmann Matthias, Rendler Torsten, Morioka Naoya, Chen Yu-Chen, Stöhr Rainer, Hassan Jawad Ul, Onoda Shinobu, Ohshima Takeshi, Lee Sang-Yun, Mukherjee Amlan, Isoya Junichi, Son Nguyen Tien, Wrachtrup Jörg
3rd Institute of Physics and Center for Applied Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany.
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden.
Nat Commun. 2019 Dec 5;10(1):5569. doi: 10.1038/s41467-019-13545-z.
Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects, the approach presented here holds promises for scalability of future SiC quantum devices.
量子技术依赖于合适的硬件,以实现相干量子态控制以及高效的量子态读出。在这方面,宽带隙半导体是一个新兴的材料平台,具有可扩展的晶圆制造方法,并拥有几种有前景的自旋活性点缺陷。用于缺陷自旋的传统读出协议依赖于荧光检测,并且受到低光子收集效率的限制。在此,我们展示了一种用于4H型碳化硅(SiC)中硅空位系综电子自旋的光电检测技术。此外,我们展示了相干自旋态控制,证明这种电学读出技术能够检测相干自旋运动。我们的读出在环境条件下工作,而其他电学读出方法通常限于低温或高磁场。考虑到SiC电子学的卓越成熟度以及SiC缺陷出色的相干特性,这里提出的方法有望实现未来SiC量子器件的可扩展性。