Widmann Matthias, Niethammer Matthias, Fedyanin Dmitry Yu, Khramtsov Igor A, Rendler Torsten, Booker Ian D, Ul Hassan Jawad, Morioka Naoya, Chen Yu-Chen, Ivanov Ivan G, Son Nguyen Tien, Ohshima Takeshi, Bockstedte Michel, Gali Adam, Bonato Cristian, Lee Sang-Yun, Wrachtrup Jörg
3. Physikalisches Institut and Research Center SCOPE and Integrated Quantum Science and Technology (IQST) , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , 141700 Dolgoprudny , Russian Federation.
Nano Lett. 2019 Oct 9;19(10):7173-7180. doi: 10.1021/acs.nanolett.9b02774. Epub 2019 Sep 25.
Color centers with long-lived spins are established platforms for quantum sensing and quantum information applications. Color centers exist in different charge states, each of them with distinct optical and spin properties. Application to quantum technology requires the capability to access and stabilize charge states for each specific task. Here, we investigate charge state manipulation of individual silicon vacancies in silicon carbide, a system which has recently shown a unique combination of long spin coherence time and ultrastable spin-selective optical transitions. In particular, we demonstrate charge state switching through the bias applied to the color center in an integrated silicon carbide optoelectronic device. We show that the electronic environment defined by the doping profile and the distribution of other defects in the device plays a key role for charge state control. Our experimental results and numerical modeling evidence that control of these complex interactions can, under certain conditions, enhance the photon emission rate. These findings open the way for deterministic control over the charge state of spin-active color centers for quantum technology and provide novel techniques for monitoring doping profiles and voltage sensing in microscopic devices.
具有长寿命自旋的色心是量子传感和量子信息应用的成熟平台。色心以不同的电荷态存在,每种电荷态都具有独特的光学和自旋特性。应用于量子技术需要能够针对每个特定任务访问并稳定电荷态。在此,我们研究了碳化硅中单个硅空位的电荷态操纵,该系统最近展现出长自旋相干时间和超稳定自旋选择性光学跃迁的独特组合。特别是,我们展示了通过施加到集成碳化硅光电器件中色心的偏置来实现电荷态切换。我们表明,由器件中的掺杂分布和其他缺陷的分布所定义的电子环境对电荷态控制起着关键作用。我们的实验结果和数值模拟证明,在某些条件下,控制这些复杂的相互作用可以提高光子发射率。这些发现为量子技术中自旋活性色心电荷态的确定性控制开辟了道路,并为监测微观器件中的掺杂分布和电压传感提供了新技术。