Suppr超能文献

使用AlPC复合材料抑制锂硫电池中的多硫化锂穿梭以增强稳定性和性能

Suppressing Lithium Polysulfide Shuttle in Li-S Batteries Using the AlPC Composite for Enhanced Stability and Performance.

作者信息

Li Ka Chun, Wei Yaoqi, Chen Xuanming, DI Zeyuan, Wong Chi Ho, Lam Leung Yuk Frank, Hu Xijun

机构信息

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China.

Division of Science, Engineering and Health Studies, School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jun 4;17(22):32293-32305. doi: 10.1021/acsami.5c02942. Epub 2025 May 21.

Abstract

This study presents the aluminum phosphate composite (AlPC) composite as a novel cathode material for lithium-sulfur (Li-S) batteries, addressing the polysulfide shuttle effect, a key challenge in Li-S battery performance. Synthesized via hydrolytic condensation and low-temperature calcination, the composite integrates aluminum alkoxide with phosphate to form a 3D structure that immobilizes lithium polysulfides (LiPS), enhancing battery efficiency and lifespan. Experimental analyses, including visible LiPS adsorption tests, and electrochemical measurements, demonstrate the superior performance of AlPC over traditional cathodes. Electrochemical tests show that AlPC/S batteries exhibit exceptional discharge capacities and stability, outperforming titanium-based cathode and Super P cathode. At 0.5 C, the battery has an initial capacity of 837 mAh/g with a decay rate of 0.06% per cycle, and at 3 C, an initial capacity of 529 mAh/g with a decay rate of 0.08% per cycle. Increased sulfur loading does not affect LiPS control, with a 2.1 mg sulfur-loaded battery showing a decay rate of 0.03% over 750 cycles. Density functional theory (DFT) calculations confirm strong LiPS interactions, essential for efficient LiPS capture. This research promotes sustainability through a scalable, eco-friendly production process, minimizing environmental impact and advancing high-energy-density battery technologies.

摘要

本研究提出将磷酸铝复合材料(AlPC)作为锂硫(Li-S)电池的新型正极材料,以应对多硫化物穿梭效应这一Li-S电池性能的关键挑战。该复合材料通过水解缩合和低温煅烧合成,将烷氧基铝与磷酸盐结合形成三维结构,固定多硫化锂(LiPS),提高电池效率和寿命。包括可见LiPS吸附测试和电化学测量在内的实验分析表明,AlPC的性能优于传统正极。电化学测试表明,AlPC/S电池具有出色的放电容量和稳定性,优于钛基正极和Super P正极。在0.5 C时,电池的初始容量为837 mAh/g,每循环衰减率为0.06%;在3 C时,初始容量为529 mAh/g,每循环衰减率为0.08%。增加硫负载量不会影响对LiPS的控制,负载2.1 mg硫的电池在750次循环中的衰减率为每循环0.03%。密度泛函理论(DFT)计算证实了LiPS之间的强相互作用,这对有效捕获LiPS至关重要。本研究通过可扩展的环保生产工艺促进可持续发展,最大限度地减少环境影响,并推动高能量密度电池技术的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8389/12147080/a328e679ff60/am5c02942_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验