Papouli Anthi, Cole James H
Hawkes Institute, Department of Computer Science.
Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK.
Curr Opin Neurol. 2025 Aug 1;38(4):316-321. doi: 10.1097/WCO.0000000000001383. Epub 2025 May 21.
This review explores the use of brain age estimation from MRI scans as a biomarker of brain health. With disorders like Alzheimer's and Parkinson's increasing globally, there is an urgent need for early detection tools that can identify at-risk individuals before cognitive symptoms emerge. Brain age offers a noninvasive, quantitative measure of neurobiological ageing, with applications in early diagnosis, disease monitoring, and personalized medicine.
Studies show that individuals with Alzheimer's, mild cognitive impairment (MCI), and Parkinson's have older brain ages than their chronological age. Longitudinal research indicates that brain-predicted age difference (brain-PAD) rises with disease progression and often precedes cognitive decline. Advances in deep learning and multimodal imaging have improved the accuracy and interpretability of brain age predictions. Moreover, socioeconomic disparities and environmental factors significantly affect brain aging, highlighting the need for inclusive models.
Brain age estimation is a promising biomarker for identify future risk of neurodegenerative disease, monitoring progression, and helping prognosis. Challenges like implementation of standardization, demographic biases, and interpretability remain. Future research should integrate brain age with biomarkers and multimodal imaging to enhance early diagnosis and intervention strategies.
本综述探讨了利用磁共振成像(MRI)扫描估计脑龄作为脑健康生物标志物的应用。随着阿尔茨海默病和帕金森病等疾病在全球范围内的增加,迫切需要能够在认知症状出现之前识别高危个体的早期检测工具。脑龄提供了一种非侵入性的神经生物学衰老定量测量方法,可应用于早期诊断、疾病监测和个性化医疗。
研究表明,患有阿尔茨海默病、轻度认知障碍(MCI)和帕金森病的个体脑龄比其实际年龄更大。纵向研究表明,脑预测年龄差异(brain-PAD)随着疾病进展而增加,并且通常先于认知能力下降。深度学习和多模态成像的进展提高了脑龄预测的准确性和可解释性。此外,社会经济差异和环境因素显著影响脑衰老,这凸显了建立包容性模型的必要性。
脑龄估计是一种很有前景的生物标志物,可用于识别神经退行性疾病的未来风险、监测疾病进展并辅助预后判断。标准化实施、人口统计学偏差和可解释性等挑战仍然存在。未来的研究应将脑龄与生物标志物和多模态成像相结合,以加强早期诊断和干预策略。